MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem1 Unicode version

Theorem unblem1 7109
Description: Lemma for unbnn 7113. After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
unblem1  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  |^| ( B  \  suc  A )  e.  B )
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem unblem1
StepHypRef Expression
1 omsson 4660 . . . . . 6  |-  om  C_  On
2 sstr 3187 . . . . . 6  |-  ( ( B  C_  om  /\  om  C_  On )  ->  B  C_  On )
31, 2mpan2 652 . . . . 5  |-  ( B 
C_  om  ->  B  C_  On )
4 ssdifss 3307 . . . . 5  |-  ( B 
C_  On  ->  ( B 
\  suc  A )  C_  On )
53, 4syl 15 . . . 4  |-  ( B 
C_  om  ->  ( B 
\  suc  A )  C_  On )
65ad2antrr 706 . . 3  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  ( B  \  suc  A ) 
C_  On )
7 ssel 3174 . . . . . 6  |-  ( B 
C_  om  ->  ( A  e.  B  ->  A  e.  om ) )
8 peano2b 4672 . . . . . 6  |-  ( A  e.  om  <->  suc  A  e. 
om )
97, 8syl6ib 217 . . . . 5  |-  ( B 
C_  om  ->  ( A  e.  B  ->  suc  A  e.  om ) )
10 eleq1 2343 . . . . . . . 8  |-  ( x  =  suc  A  -> 
( x  e.  y  <->  suc  A  e.  y ) )
1110rexbidv 2564 . . . . . . 7  |-  ( x  =  suc  A  -> 
( E. y  e.  B  x  e.  y  <->  E. y  e.  B  suc  A  e.  y ) )
1211rspccva 2883 . . . . . 6  |-  ( ( A. x  e.  om  E. y  e.  B  x  e.  y  /\  suc  A  e.  om )  ->  E. y  e.  B  suc  A  e.  y )
13 ssel 3174 . . . . . . . . . . 11  |-  ( B 
C_  om  ->  ( y  e.  B  ->  y  e.  om ) )
14 nnord 4664 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  Ord  y )
15 ordn2lp 4412 . . . . . . . . . . . . . 14  |-  ( Ord  y  ->  -.  (
y  e.  suc  A  /\  suc  A  e.  y ) )
16 imnan 411 . . . . . . . . . . . . . 14  |-  ( ( y  e.  suc  A  ->  -.  suc  A  e.  y )  <->  -.  (
y  e.  suc  A  /\  suc  A  e.  y ) )
1715, 16sylibr 203 . . . . . . . . . . . . 13  |-  ( Ord  y  ->  ( y  e.  suc  A  ->  -.  suc  A  e.  y ) )
1817con2d 107 . . . . . . . . . . . 12  |-  ( Ord  y  ->  ( suc  A  e.  y  ->  -.  y  e.  suc  A ) )
1914, 18syl 15 . . . . . . . . . . 11  |-  ( y  e.  om  ->  ( suc  A  e.  y  ->  -.  y  e.  suc  A ) )
2013, 19syl6 29 . . . . . . . . . 10  |-  ( B 
C_  om  ->  ( y  e.  B  ->  ( suc  A  e.  y  ->  -.  y  e.  suc  A ) ) )
2120imdistand 673 . . . . . . . . 9  |-  ( B 
C_  om  ->  ( ( y  e.  B  /\  suc  A  e.  y )  ->  ( y  e.  B  /\  -.  y  e.  suc  A ) ) )
22 eldif 3162 . . . . . . . . . 10  |-  ( y  e.  ( B  \  suc  A )  <->  ( y  e.  B  /\  -.  y  e.  suc  A ) )
23 ne0i 3461 . . . . . . . . . 10  |-  ( y  e.  ( B  \  suc  A )  ->  ( B  \  suc  A )  =/=  (/) )
2422, 23sylbir 204 . . . . . . . . 9  |-  ( ( y  e.  B  /\  -.  y  e.  suc  A )  ->  ( B  \  suc  A )  =/=  (/) )
2521, 24syl6 29 . . . . . . . 8  |-  ( B 
C_  om  ->  ( ( y  e.  B  /\  suc  A  e.  y )  ->  ( B  \  suc  A )  =/=  (/) ) )
2625exp3a 425 . . . . . . 7  |-  ( B 
C_  om  ->  ( y  e.  B  ->  ( suc  A  e.  y  -> 
( B  \  suc  A )  =/=  (/) ) ) )
2726rexlimdv 2666 . . . . . 6  |-  ( B 
C_  om  ->  ( E. y  e.  B  suc  A  e.  y  ->  ( B  \  suc  A )  =/=  (/) ) )
2812, 27syl5 28 . . . . 5  |-  ( B 
C_  om  ->  ( ( A. x  e.  om  E. y  e.  B  x  e.  y  /\  suc  A  e.  om )  -> 
( B  \  suc  A )  =/=  (/) ) )
299, 28sylan2d 468 . . . 4  |-  ( B 
C_  om  ->  ( ( A. x  e.  om  E. y  e.  B  x  e.  y  /\  A  e.  B )  ->  ( B  \  suc  A )  =/=  (/) ) )
3029impl 603 . . 3  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  ( B  \  suc  A )  =/=  (/) )
31 onint 4586 . . 3  |-  ( ( ( B  \  suc  A )  C_  On  /\  ( B  \  suc  A )  =/=  (/) )  ->  |^| ( B  \  suc  A )  e.  ( B  \  suc  A ) )
326, 30, 31syl2anc 642 . 2  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  |^| ( B  \  suc  A )  e.  ( B  \  suc  A ) )
33 eldifi 3298 . 2  |-  ( |^| ( B  \  suc  A
)  e.  ( B 
\  suc  A )  ->  |^| ( B  \  suc  A )  e.  B
)
3432, 33syl 15 1  |-  ( ( ( B  C_  om  /\  A. x  e.  om  E. y  e.  B  x  e.  y )  /\  A  e.  B )  ->  |^| ( B  \  suc  A )  e.  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    \ cdif 3149    C_ wss 3152   (/)c0 3455   |^|cint 3862   Ord word 4391   Oncon0 4392   suc csuc 4394   omcom 4656
This theorem is referenced by:  unblem2  7110  unblem3  7111
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657
  Copyright terms: Public domain W3C validator