MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem2 Unicode version

Theorem unblem2 7110
Description: Lemma for unbnn 7113. The value of the function  F belongs to the unbounded set of natural numbers  A. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2  |-  F  =  ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )
Assertion
Ref Expression
unblem2  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  A ) )
Distinct variable groups:    w, v, x, z, A    v, F, w, z
Allowed substitution hint:    F( x)

Proof of Theorem unblem2
Dummy variables  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5525 . . . 4  |-  ( z  =  (/)  ->  ( F `
 z )  =  ( F `  (/) ) )
21eleq1d 2349 . . 3  |-  ( z  =  (/)  ->  ( ( F `  z )  e.  A  <->  ( F `  (/) )  e.  A
) )
3 fveq2 5525 . . . 4  |-  ( z  =  u  ->  ( F `  z )  =  ( F `  u ) )
43eleq1d 2349 . . 3  |-  ( z  =  u  ->  (
( F `  z
)  e.  A  <->  ( F `  u )  e.  A
) )
5 fveq2 5525 . . . 4  |-  ( z  =  suc  u  -> 
( F `  z
)  =  ( F `
 suc  u )
)
65eleq1d 2349 . . 3  |-  ( z  =  suc  u  -> 
( ( F `  z )  e.  A  <->  ( F `  suc  u
)  e.  A ) )
7 omsson 4660 . . . . . 6  |-  om  C_  On
8 sstr 3187 . . . . . 6  |-  ( ( A  C_  om  /\  om  C_  On )  ->  A  C_  On )
97, 8mpan2 652 . . . . 5  |-  ( A 
C_  om  ->  A  C_  On )
10 peano1 4675 . . . . . . . . 9  |-  (/)  e.  om
11 eleq1 2343 . . . . . . . . . . 11  |-  ( w  =  (/)  ->  ( w  e.  v  <->  (/)  e.  v ) )
1211rexbidv 2564 . . . . . . . . . 10  |-  ( w  =  (/)  ->  ( E. v  e.  A  w  e.  v  <->  E. v  e.  A  (/)  e.  v ) )
1312rspcv 2880 . . . . . . . . 9  |-  ( (/)  e.  om  ->  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  E. v  e.  A  (/) 
e.  v ) )
1410, 13ax-mp 8 . . . . . . . 8  |-  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  E. v  e.  A  (/) 
e.  v )
15 df-rex 2549 . . . . . . . 8  |-  ( E. v  e.  A  (/)  e.  v  <->  E. v ( v  e.  A  /\  (/)  e.  v ) )
1614, 15sylib 188 . . . . . . 7  |-  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  E. v ( v  e.  A  /\  (/)  e.  v ) )
17 exsimpl 1579 . . . . . . 7  |-  ( E. v ( v  e.  A  /\  (/)  e.  v )  ->  E. v 
v  e.  A )
1816, 17syl 15 . . . . . 6  |-  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  E. v  v  e.  A )
19 n0 3464 . . . . . 6  |-  ( A  =/=  (/)  <->  E. v  v  e.  A )
2018, 19sylibr 203 . . . . 5  |-  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  A  =/=  (/) )
21 onint 4586 . . . . 5  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  |^| A  e.  A )
229, 20, 21syl2an 463 . . . 4  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  |^| A  e.  A )
23 unblem.2 . . . . . . . 8  |-  F  =  ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )
2423fveq1i 5526 . . . . . . 7  |-  ( F `
 (/) )  =  ( ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om ) `  (/) )
25 fr0g 6448 . . . . . . 7  |-  ( |^| A  e.  A  ->  ( ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om ) `  (/) )  = 
|^| A )
2624, 25syl5req 2328 . . . . . 6  |-  ( |^| A  e.  A  ->  |^| A  =  ( F `
 (/) ) )
2726eleq1d 2349 . . . . 5  |-  ( |^| A  e.  A  ->  (
|^| A  e.  A  <->  ( F `  (/) )  e.  A ) )
2827ibi 232 . . . 4  |-  ( |^| A  e.  A  ->  ( F `  (/) )  e.  A )
2922, 28syl 15 . . 3  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  ( F `  (/) )  e.  A )
30 unblem1 7109 . . . . 5  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  ( F `  u )  e.  A )  ->  |^| ( A  \  suc  ( F `
 u ) )  e.  A )
31 suceq 4457 . . . . . . . . . . . 12  |-  ( y  =  x  ->  suc  y  =  suc  x )
3231difeq2d 3294 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( A  \  suc  y )  =  ( A  \  suc  x ) )
3332inteqd 3867 . . . . . . . . . 10  |-  ( y  =  x  ->  |^| ( A  \  suc  y )  =  |^| ( A 
\  suc  x )
)
34 suceq 4457 . . . . . . . . . . . 12  |-  ( y  =  ( F `  u )  ->  suc  y  =  suc  ( F `
 u ) )
3534difeq2d 3294 . . . . . . . . . . 11  |-  ( y  =  ( F `  u )  ->  ( A  \  suc  y )  =  ( A  \  suc  ( F `  u
) ) )
3635inteqd 3867 . . . . . . . . . 10  |-  ( y  =  ( F `  u )  ->  |^| ( A  \  suc  y )  =  |^| ( A 
\  suc  ( F `  u ) ) )
3723, 33, 36frsucmpt2 6452 . . . . . . . . 9  |-  ( ( u  e.  om  /\  |^| ( A  \  suc  ( F `  u ) )  e.  A )  ->  ( F `  suc  u )  =  |^| ( A  \  suc  ( F `  u )
) )
3837eqcomd 2288 . . . . . . . 8  |-  ( ( u  e.  om  /\  |^| ( A  \  suc  ( F `  u ) )  e.  A )  ->  |^| ( A  \  suc  ( F `  u
) )  =  ( F `  suc  u
) )
3938eleq1d 2349 . . . . . . 7  |-  ( ( u  e.  om  /\  |^| ( A  \  suc  ( F `  u ) )  e.  A )  ->  ( |^| ( A  \  suc  ( F `
 u ) )  e.  A  <->  ( F `  suc  u )  e.  A ) )
4039ex 423 . . . . . 6  |-  ( u  e.  om  ->  ( |^| ( A  \  suc  ( F `  u ) )  e.  A  -> 
( |^| ( A  \  suc  ( F `  u
) )  e.  A  <->  ( F `  suc  u
)  e.  A ) ) )
4140ibd 234 . . . . 5  |-  ( u  e.  om  ->  ( |^| ( A  \  suc  ( F `  u ) )  e.  A  -> 
( F `  suc  u )  e.  A
) )
4230, 41syl5 28 . . . 4  |-  ( u  e.  om  ->  (
( ( A  C_  om 
/\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  ( F `  u )  e.  A )  -> 
( F `  suc  u )  e.  A
) )
4342exp3a 425 . . 3  |-  ( u  e.  om  ->  (
( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
( F `  u
)  e.  A  -> 
( F `  suc  u )  e.  A
) ) )
442, 4, 6, 29, 43finds2 4684 . 2  |-  ( z  e.  om  ->  (
( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  ( F `  z )  e.  A ) )
4544com12 27 1  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    \ cdif 3149    C_ wss 3152   (/)c0 3455   |^|cint 3862    e. cmpt 4077   Oncon0 4392   suc csuc 4394   omcom 4656    |` cres 4691   ` cfv 5255   reccrdg 6422
This theorem is referenced by:  unblem3  7111  unblem4  7112
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423
  Copyright terms: Public domain W3C validator