MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem3 Unicode version

Theorem unblem3 7324
Description: Lemma for unbnn 7326. The value of the function  F is less than its value at a successor. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2  |-  F  =  ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )
Assertion
Ref Expression
unblem3  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  ( F `  suc  z ) ) )
Distinct variable groups:    w, v, x, z, A    v, F, w, z
Allowed substitution hint:    F( x)

Proof of Theorem unblem3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 unblem.2 . . . . . . 7  |-  F  =  ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )
21unblem2 7323 . . . . . 6  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  A ) )
32imp 419 . . . . 5  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  z  e.  om )  ->  ( F `  z )  e.  A )
4 omsson 4812 . . . . . . . 8  |-  om  C_  On
5 sstr 3320 . . . . . . . 8  |-  ( ( A  C_  om  /\  om  C_  On )  ->  A  C_  On )
64, 5mpan2 653 . . . . . . 7  |-  ( A 
C_  om  ->  A  C_  On )
7 ssel 3306 . . . . . . . 8  |-  ( A 
C_  On  ->  ( ( F `  z )  e.  A  ->  ( F `  z )  e.  On ) )
87anc2li 541 . . . . . . 7  |-  ( A 
C_  On  ->  ( ( F `  z )  e.  A  ->  ( A  C_  On  /\  ( F `  z )  e.  On ) ) )
96, 8syl 16 . . . . . 6  |-  ( A 
C_  om  ->  ( ( F `  z )  e.  A  ->  ( A  C_  On  /\  ( F `  z )  e.  On ) ) )
109ad2antrr 707 . . . . 5  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  z  e.  om )  ->  (
( F `  z
)  e.  A  -> 
( A  C_  On  /\  ( F `  z
)  e.  On ) ) )
113, 10mpd 15 . . . 4  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  z  e.  om )  ->  ( A  C_  On  /\  ( F `  z )  e.  On ) )
12 onmindif 4634 . . . 4  |-  ( ( A  C_  On  /\  ( F `  z )  e.  On )  ->  ( F `  z )  e.  |^| ( A  \  suc  ( F `  z
) ) )
1311, 12syl 16 . . 3  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  z  e.  om )  ->  ( F `  z )  e.  |^| ( A  \  suc  ( F `  z
) ) )
14 unblem1 7322 . . . . . . 7  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  ( F `  z )  e.  A )  ->  |^| ( A  \  suc  ( F `
 z ) )  e.  A )
1514ex 424 . . . . . 6  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
( F `  z
)  e.  A  ->  |^| ( A  \  suc  ( F `  z ) )  e.  A ) )
162, 15syld 42 . . . . 5  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  |^| ( A  \  suc  ( F `  z ) )  e.  A ) )
17 suceq 4610 . . . . . . . . 9  |-  ( y  =  x  ->  suc  y  =  suc  x )
1817difeq2d 3429 . . . . . . . 8  |-  ( y  =  x  ->  ( A  \  suc  y )  =  ( A  \  suc  x ) )
1918inteqd 4019 . . . . . . 7  |-  ( y  =  x  ->  |^| ( A  \  suc  y )  =  |^| ( A 
\  suc  x )
)
20 suceq 4610 . . . . . . . . 9  |-  ( y  =  ( F `  z )  ->  suc  y  =  suc  ( F `
 z ) )
2120difeq2d 3429 . . . . . . . 8  |-  ( y  =  ( F `  z )  ->  ( A  \  suc  y )  =  ( A  \  suc  ( F `  z
) ) )
2221inteqd 4019 . . . . . . 7  |-  ( y  =  ( F `  z )  ->  |^| ( A  \  suc  y )  =  |^| ( A 
\  suc  ( F `  z ) ) )
231, 19, 22frsucmpt2 6660 . . . . . 6  |-  ( ( z  e.  om  /\  |^| ( A  \  suc  ( F `  z ) )  e.  A )  ->  ( F `  suc  z )  =  |^| ( A  \  suc  ( F `  z )
) )
2423ex 424 . . . . 5  |-  ( z  e.  om  ->  ( |^| ( A  \  suc  ( F `  z ) )  e.  A  -> 
( F `  suc  z )  =  |^| ( A  \  suc  ( F `  z )
) ) )
2516, 24sylcom 27 . . . 4  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  suc  z
)  =  |^| ( A  \  suc  ( F `
 z ) ) ) )
2625imp 419 . . 3  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  z  e.  om )  ->  ( F `  suc  z )  =  |^| ( A 
\  suc  ( F `  z ) ) )
2713, 26eleqtrrd 2485 . 2  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  z  e.  om )  ->  ( F `  z )  e.  ( F `  suc  z ) )
2827ex 424 1  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  ( F `  suc  z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2670   E.wrex 2671   _Vcvv 2920    \ cdif 3281    C_ wss 3284   |^|cint 4014    e. cmpt 4230   Oncon0 4545   suc csuc 4547   omcom 4808    |` cres 4843   ` cfv 5417   reccrdg 6630
This theorem is referenced by:  unblem4  7325
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-recs 6596  df-rdg 6631
  Copyright terms: Public domain W3C validator