MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem4 Unicode version

Theorem unblem4 7128
Description: Lemma for unbnn 7129. The function  F maps the set of natural numbers one-to-one to the set of unbounded natural numbers  A. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2  |-  F  =  ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )
Assertion
Ref Expression
unblem4  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  F : om -1-1-> A )
Distinct variable groups:    w, v, x, A    v, F, w
Allowed substitution hint:    F( x)

Proof of Theorem unblem4
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 omsson 4676 . . . 4  |-  om  C_  On
2 sstr 3200 . . . 4  |-  ( ( A  C_  om  /\  om  C_  On )  ->  A  C_  On )
31, 2mpan2 652 . . 3  |-  ( A 
C_  om  ->  A  C_  On )
43adantr 451 . 2  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  A  C_  On )
5 frfnom 6463 . . . 4  |-  ( rec ( ( x  e. 
_V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )  Fn  om
6 unblem.2 . . . . 5  |-  F  =  ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )
76fneq1i 5354 . . . 4  |-  ( F  Fn  om  <->  ( rec ( ( x  e. 
_V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )  Fn  om )
85, 7mpbir 200 . . 3  |-  F  Fn  om
96unblem2 7126 . . . 4  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  A ) )
109ralrimiv 2638 . . 3  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  A. z  e.  om  ( F `  z )  e.  A
)
11 ffnfv 5701 . . . 4  |-  ( F : om --> A  <->  ( F  Fn  om  /\  A. z  e.  om  ( F `  z )  e.  A
) )
1211biimpri 197 . . 3  |-  ( ( F  Fn  om  /\  A. z  e.  om  ( F `  z )  e.  A )  ->  F : om --> A )
138, 10, 12sylancr 644 . 2  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  F : om --> A )
146unblem3 7127 . . 3  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  ( F `  suc  z ) ) )
1514ralrimiv 2638 . 2  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  A. z  e.  om  ( F `  z )  e.  ( F `  suc  z
) )
16 omsmo 6668 . 2  |-  ( ( ( A  C_  On  /\  F : om --> A )  /\  A. z  e. 
om  ( F `  z )  e.  ( F `  suc  z
) )  ->  F : om -1-1-> A )
174, 13, 15, 16syl21anc 1181 1  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  F : om -1-1-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    \ cdif 3162    C_ wss 3165   |^|cint 3878    e. cmpt 4093   Oncon0 4408   suc csuc 4410   omcom 4672    |` cres 4707    Fn wfn 5266   -->wf 5267   -1-1->wf1 5268   ` cfv 5271   reccrdg 6438
This theorem is referenced by:  unbnn  7129
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439
  Copyright terms: Public domain W3C validator