MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem4 Structured version   Unicode version

Theorem unblem4 7354
Description: Lemma for unbnn 7355. The function  F maps the set of natural numbers one-to-one to the set of unbounded natural numbers  A. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2  |-  F  =  ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )
Assertion
Ref Expression
unblem4  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  F : om -1-1-> A )
Distinct variable groups:    w, v, x, A    v, F, w
Allowed substitution hint:    F( x)

Proof of Theorem unblem4
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 omsson 4841 . . . 4  |-  om  C_  On
2 sstr 3348 . . . 4  |-  ( ( A  C_  om  /\  om  C_  On )  ->  A  C_  On )
31, 2mpan2 653 . . 3  |-  ( A 
C_  om  ->  A  C_  On )
43adantr 452 . 2  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  A  C_  On )
5 frfnom 6684 . . . 4  |-  ( rec ( ( x  e. 
_V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )  Fn  om
6 unblem.2 . . . . 5  |-  F  =  ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )
76fneq1i 5531 . . . 4  |-  ( F  Fn  om  <->  ( rec ( ( x  e. 
_V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )  Fn  om )
85, 7mpbir 201 . . 3  |-  F  Fn  om
96unblem2 7352 . . . 4  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  A ) )
109ralrimiv 2780 . . 3  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  A. z  e.  om  ( F `  z )  e.  A
)
11 ffnfv 5886 . . . 4  |-  ( F : om --> A  <->  ( F  Fn  om  /\  A. z  e.  om  ( F `  z )  e.  A
) )
1211biimpri 198 . . 3  |-  ( ( F  Fn  om  /\  A. z  e.  om  ( F `  z )  e.  A )  ->  F : om --> A )
138, 10, 12sylancr 645 . 2  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  F : om --> A )
146unblem3 7353 . . 3  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  ( F `  suc  z ) ) )
1514ralrimiv 2780 . 2  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  A. z  e.  om  ( F `  z )  e.  ( F `  suc  z
) )
16 omsmo 6889 . 2  |-  ( ( ( A  C_  On  /\  F : om --> A )  /\  A. z  e. 
om  ( F `  z )  e.  ( F `  suc  z
) )  ->  F : om -1-1-> A )
174, 13, 15, 16syl21anc 1183 1  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  F : om -1-1-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   _Vcvv 2948    \ cdif 3309    C_ wss 3312   |^|cint 4042    e. cmpt 4258   Oncon0 4573   suc csuc 4575   omcom 4837    |` cres 4872    Fn wfn 5441   -->wf 5442   -1-1->wf1 5443   ` cfv 5446   reccrdg 6659
This theorem is referenced by:  unbnn  7355
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-recs 6625  df-rdg 6660
  Copyright terms: Public domain W3C validator