MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbnn3 Unicode version

Theorem unbnn3 7375
Description: Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. This version of unbnn 7129 eliminates its hypothesis by assuming the Axiom of Infinity. (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
unbnn3  |-  ( ( A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  A  ~~  om )
Distinct variable group:    x, y, A

Proof of Theorem unbnn3
StepHypRef Expression
1 omex 7360 . 2  |-  om  e.  _V
2 unbnn 7129 . 2  |-  ( ( om  e.  _V  /\  A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  A  ~~  om )
31, 2mp3an1 1264 1  |-  ( ( A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  A  ~~  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   class class class wbr 4039   omcom 4672    ~~ cen 6876
This theorem is referenced by:  unbenlem  12971
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439  df-en 6880  df-dom 6881
  Copyright terms: Public domain W3C validator