MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncf2 Structured version   Unicode version

Theorem uncf2 14326
Description: Value of the uncurry functor on a morphism. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfval.g  |-  F  =  ( <" C D E "> uncurryF  G )
uncfval.c  |-  ( ph  ->  D  e.  Cat )
uncfval.d  |-  ( ph  ->  E  e.  Cat )
uncfval.f  |-  ( ph  ->  G  e.  ( C 
Func  ( D FuncCat  E
) ) )
uncf1.a  |-  A  =  ( Base `  C
)
uncf1.b  |-  B  =  ( Base `  D
)
uncf1.x  |-  ( ph  ->  X  e.  A )
uncf1.y  |-  ( ph  ->  Y  e.  B )
uncf2.h  |-  H  =  (  Hom  `  C
)
uncf2.j  |-  J  =  (  Hom  `  D
)
uncf2.z  |-  ( ph  ->  Z  e.  A )
uncf2.w  |-  ( ph  ->  W  e.  B )
uncf2.r  |-  ( ph  ->  R  e.  ( X H Z ) )
uncf2.s  |-  ( ph  ->  S  e.  ( Y J W ) )
Assertion
Ref Expression
uncf2  |-  ( ph  ->  ( R ( <. X ,  Y >. ( 2nd `  F )
<. Z ,  W >. ) S )  =  ( ( ( ( X ( 2nd `  G
) Z ) `  R ) `  W
) ( <. (
( 1st `  (
( 1st `  G
) `  X )
) `  Y ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  W ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Z )
) `  W )
) ( ( Y ( 2nd `  (
( 1st `  G
) `  X )
) W ) `  S ) ) )

Proof of Theorem uncf2
StepHypRef Expression
1 uncfval.g . . . . . . 7  |-  F  =  ( <" C D E "> uncurryF  G )
2 uncfval.c . . . . . . 7  |-  ( ph  ->  D  e.  Cat )
3 uncfval.d . . . . . . 7  |-  ( ph  ->  E  e.  Cat )
4 uncfval.f . . . . . . 7  |-  ( ph  ->  G  e.  ( C 
Func  ( D FuncCat  E
) ) )
51, 2, 3, 4uncfval 14323 . . . . . 6  |-  ( ph  ->  F  =  ( ( D evalF 
E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) )
65fveq2d 5724 . . . . 5  |-  ( ph  ->  ( 2nd `  F
)  =  ( 2nd `  ( ( D evalF  E )  o.func  ( ( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) ) )
76oveqd 6090 . . . 4  |-  ( ph  ->  ( <. X ,  Y >. ( 2nd `  F
) <. Z ,  W >. )  =  ( <. X ,  Y >. ( 2nd `  ( ( D evalF 
E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) ) <. Z ,  W >. ) )
87oveqd 6090 . . 3  |-  ( ph  ->  ( R ( <. X ,  Y >. ( 2nd `  F )
<. Z ,  W >. ) S )  =  ( R ( <. X ,  Y >. ( 2nd `  (
( D evalF  E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) ) <. Z ,  W >. ) S ) )
9 df-ov 6076 . . . 4  |-  ( R ( <. X ,  Y >. ( 2nd `  (
( D evalF  E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) ) <. Z ,  W >. ) S )  =  ( ( <. X ,  Y >. ( 2nd `  (
( D evalF  E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) ) <. Z ,  W >. ) `  <. R ,  S >. )
10 eqid 2435 . . . . . 6  |-  ( C  X.c  D )  =  ( C  X.c  D )
11 uncf1.a . . . . . 6  |-  A  =  ( Base `  C
)
12 uncf1.b . . . . . 6  |-  B  =  ( Base `  D
)
1310, 11, 12xpcbas 14267 . . . . 5  |-  ( A  X.  B )  =  ( Base `  ( C  X.c  D ) )
14 eqid 2435 . . . . . 6  |-  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) )  =  ( ( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
)
15 eqid 2435 . . . . . 6  |-  ( ( D FuncCat  E )  X.c  D )  =  ( ( D FuncCat  E )  X.c  D )
16 funcrcl 14052 . . . . . . . . . 10  |-  ( G  e.  ( C  Func  ( D FuncCat  E ) )  -> 
( C  e.  Cat  /\  ( D FuncCat  E )  e.  Cat ) )
174, 16syl 16 . . . . . . . . 9  |-  ( ph  ->  ( C  e.  Cat  /\  ( D FuncCat  E )  e.  Cat ) )
1817simpld 446 . . . . . . . 8  |-  ( ph  ->  C  e.  Cat )
19 eqid 2435 . . . . . . . 8  |-  ( C  1stF  D )  =  ( C  1stF  D )
2010, 18, 2, 191stfcl 14286 . . . . . . 7  |-  ( ph  ->  ( C  1stF  D )  e.  ( ( C  X.c  D
)  Func  C )
)
2120, 4cofucl 14077 . . . . . 6  |-  ( ph  ->  ( G  o.func  ( C  1stF  D ) )  e.  ( ( C  X.c  D ) 
Func  ( D FuncCat  E
) ) )
22 eqid 2435 . . . . . . 7  |-  ( C  2ndF  D )  =  ( C  2ndF  D )
2310, 18, 2, 222ndfcl 14287 . . . . . 6  |-  ( ph  ->  ( C  2ndF  D )  e.  ( ( C  X.c  D
)  Func  D )
)
2414, 15, 21, 23prfcl 14292 . . . . 5  |-  ( ph  ->  ( ( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
)  e.  ( ( C  X.c  D )  Func  (
( D FuncCat  E )  X.c  D ) ) )
25 eqid 2435 . . . . . 6  |-  ( D evalF  E
)  =  ( D evalF  E
)
26 eqid 2435 . . . . . 6  |-  ( D FuncCat  E )  =  ( D FuncCat  E )
2725, 26, 2, 3evlfcl 14311 . . . . 5  |-  ( ph  ->  ( D evalF  E )  e.  ( ( ( D FuncCat  E
)  X.c  D )  Func  E
) )
28 uncf1.x . . . . . 6  |-  ( ph  ->  X  e.  A )
29 uncf1.y . . . . . 6  |-  ( ph  ->  Y  e.  B )
30 opelxpi 4902 . . . . . 6  |-  ( ( X  e.  A  /\  Y  e.  B )  -> 
<. X ,  Y >.  e.  ( A  X.  B
) )
3128, 29, 30syl2anc 643 . . . . 5  |-  ( ph  -> 
<. X ,  Y >.  e.  ( A  X.  B
) )
32 uncf2.z . . . . . 6  |-  ( ph  ->  Z  e.  A )
33 uncf2.w . . . . . 6  |-  ( ph  ->  W  e.  B )
34 opelxpi 4902 . . . . . 6  |-  ( ( Z  e.  A  /\  W  e.  B )  -> 
<. Z ,  W >.  e.  ( A  X.  B
) )
3532, 33, 34syl2anc 643 . . . . 5  |-  ( ph  -> 
<. Z ,  W >.  e.  ( A  X.  B
) )
36 eqid 2435 . . . . 5  |-  (  Hom  `  ( C  X.c  D ) )  =  (  Hom  `  ( C  X.c  D ) )
37 uncf2.r . . . . . . 7  |-  ( ph  ->  R  e.  ( X H Z ) )
38 uncf2.s . . . . . . 7  |-  ( ph  ->  S  e.  ( Y J W ) )
39 opelxpi 4902 . . . . . . 7  |-  ( ( R  e.  ( X H Z )  /\  S  e.  ( Y J W ) )  ->  <. R ,  S >.  e.  ( ( X H Z )  X.  ( Y J W ) ) )
4037, 38, 39syl2anc 643 . . . . . 6  |-  ( ph  -> 
<. R ,  S >.  e.  ( ( X H Z )  X.  ( Y J W ) ) )
41 uncf2.h . . . . . . 7  |-  H  =  (  Hom  `  C
)
42 uncf2.j . . . . . . 7  |-  J  =  (  Hom  `  D
)
4310, 11, 12, 41, 42, 28, 29, 32, 33, 36xpchom2 14275 . . . . . 6  |-  ( ph  ->  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. Z ,  W >. )  =  ( ( X H Z )  X.  ( Y J W ) ) )
4440, 43eleqtrrd 2512 . . . . 5  |-  ( ph  -> 
<. R ,  S >.  e.  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. Z ,  W >. ) )
4513, 24, 27, 31, 35, 36, 44cofu2 14075 . . . 4  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  (
( D evalF  E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) ) <. Z ,  W >. ) `  <. R ,  S >. )  =  ( ( ( ( 1st `  ( ( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) `  <. X ,  Y >. )
( 2nd `  ( D evalF  E ) ) ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. Z ,  W >. ) ) `  (
( <. X ,  Y >. ( 2nd `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )
) )
469, 45syl5eq 2479 . . 3  |-  ( ph  ->  ( R ( <. X ,  Y >. ( 2nd `  ( ( D evalF 
E )  o.func  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) ) <. Z ,  W >. ) S )  =  ( ( ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. X ,  Y >. ) ( 2nd `  ( D evalF  E ) ) ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. Z ,  W >. ) ) `  (
( <. X ,  Y >. ( 2nd `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )
) )
478, 46eqtrd 2467 . 2  |-  ( ph  ->  ( R ( <. X ,  Y >. ( 2nd `  F )
<. Z ,  W >. ) S )  =  ( ( ( ( 1st `  ( ( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) `  <. X ,  Y >. )
( 2nd `  ( D evalF  E ) ) ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. Z ,  W >. ) ) `  (
( <. X ,  Y >. ( 2nd `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )
) )
4814, 13, 36, 21, 23, 31prf1 14289 . . . . . 6  |-  ( ph  ->  ( ( 1st `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) `  <. X ,  Y >. )  =  <. ( ( 1st `  ( G  o.func  ( C  1stF  D ) ) ) `  <. X ,  Y >. ) ,  ( ( 1st `  ( C  2ndF  D )
) `  <. X ,  Y >. ) >. )
4913, 20, 4, 31cofu1 14073 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  ( G  o.func  ( C  1stF  D )
) ) `  <. X ,  Y >. )  =  ( ( 1st `  G ) `  (
( 1st `  ( C  1stF  D ) ) `  <. X ,  Y >. ) ) )
5010, 13, 36, 18, 2, 19, 311stf1 14281 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st `  ( C  1stF  D ) ) `  <. X ,  Y >. )  =  ( 1st `  <. X ,  Y >. )
)
51 op1stg 6351 . . . . . . . . . . 11  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( 1st `  <. X ,  Y >. )  =  X )
5228, 29, 51syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  <. X ,  Y >. )  =  X )
5350, 52eqtrd 2467 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st `  ( C  1stF  D ) ) `  <. X ,  Y >. )  =  X )
5453fveq2d 5724 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  G
) `  ( ( 1st `  ( C  1stF  D ) ) `  <. X ,  Y >. ) )  =  ( ( 1st `  G
) `  X )
)
5549, 54eqtrd 2467 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  ( G  o.func  ( C  1stF  D )
) ) `  <. X ,  Y >. )  =  ( ( 1st `  G ) `  X
) )
5610, 13, 36, 18, 2, 22, 312ndf1 14284 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  ( C  2ndF  D ) ) `  <. X ,  Y >. )  =  ( 2nd `  <. X ,  Y >. )
)
57 op2ndg 6352 . . . . . . . . 9  |-  ( ( X  e.  A  /\  Y  e.  B )  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
5828, 29, 57syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( 2nd `  <. X ,  Y >. )  =  Y )
5956, 58eqtrd 2467 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  ( C  2ndF  D ) ) `  <. X ,  Y >. )  =  Y )
6055, 59opeq12d 3984 . . . . . 6  |-  ( ph  -> 
<. ( ( 1st `  ( G  o.func  ( C  1stF  D )
) ) `  <. X ,  Y >. ) ,  ( ( 1st `  ( C  2ndF  D )
) `  <. X ,  Y >. ) >.  =  <. ( ( 1st `  G
) `  X ) ,  Y >. )
6148, 60eqtrd 2467 . . . . 5  |-  ( ph  ->  ( ( 1st `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) `  <. X ,  Y >. )  =  <. ( ( 1st `  G ) `  X
) ,  Y >. )
6214, 13, 36, 21, 23, 35prf1 14289 . . . . . 6  |-  ( ph  ->  ( ( 1st `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) `  <. Z ,  W >. )  =  <. ( ( 1st `  ( G  o.func  ( C  1stF  D ) ) ) `  <. Z ,  W >. ) ,  ( ( 1st `  ( C  2ndF  D )
) `  <. Z ,  W >. ) >. )
6313, 20, 4, 35cofu1 14073 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  ( G  o.func  ( C  1stF  D )
) ) `  <. Z ,  W >. )  =  ( ( 1st `  G ) `  (
( 1st `  ( C  1stF  D ) ) `  <. Z ,  W >. ) ) )
6410, 13, 36, 18, 2, 19, 351stf1 14281 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st `  ( C  1stF  D ) ) `  <. Z ,  W >. )  =  ( 1st `  <. Z ,  W >. )
)
65 op1stg 6351 . . . . . . . . . . 11  |-  ( ( Z  e.  A  /\  W  e.  B )  ->  ( 1st `  <. Z ,  W >. )  =  Z )
6632, 33, 65syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  ( 1st `  <. Z ,  W >. )  =  Z )
6764, 66eqtrd 2467 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st `  ( C  1stF  D ) ) `  <. Z ,  W >. )  =  Z )
6867fveq2d 5724 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  G
) `  ( ( 1st `  ( C  1stF  D ) ) `  <. Z ,  W >. ) )  =  ( ( 1st `  G
) `  Z )
)
6963, 68eqtrd 2467 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  ( G  o.func  ( C  1stF  D )
) ) `  <. Z ,  W >. )  =  ( ( 1st `  G ) `  Z
) )
7010, 13, 36, 18, 2, 22, 352ndf1 14284 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  ( C  2ndF  D ) ) `  <. Z ,  W >. )  =  ( 2nd `  <. Z ,  W >. )
)
71 op2ndg 6352 . . . . . . . . 9  |-  ( ( Z  e.  A  /\  W  e.  B )  ->  ( 2nd `  <. Z ,  W >. )  =  W )
7232, 33, 71syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( 2nd `  <. Z ,  W >. )  =  W )
7370, 72eqtrd 2467 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  ( C  2ndF  D ) ) `  <. Z ,  W >. )  =  W )
7469, 73opeq12d 3984 . . . . . 6  |-  ( ph  -> 
<. ( ( 1st `  ( G  o.func  ( C  1stF  D )
) ) `  <. Z ,  W >. ) ,  ( ( 1st `  ( C  2ndF  D )
) `  <. Z ,  W >. ) >.  =  <. ( ( 1st `  G
) `  Z ) ,  W >. )
7562, 74eqtrd 2467 . . . . 5  |-  ( ph  ->  ( ( 1st `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) `  <. Z ,  W >. )  =  <. ( ( 1st `  G ) `  Z
) ,  W >. )
7661, 75oveq12d 6091 . . . 4  |-  ( ph  ->  ( ( ( 1st `  ( ( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) `  <. X ,  Y >. )
( 2nd `  ( D evalF  E ) ) ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. Z ,  W >. ) )  =  (
<. ( ( 1st `  G
) `  X ) ,  Y >. ( 2nd `  ( D evalF  E ) ) <. (
( 1st `  G
) `  Z ) ,  W >. ) )
7714, 13, 36, 21, 23, 31, 35, 44prf2 14291 . . . . 5  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )  =  <. ( ( <. X ,  Y >. ( 2nd `  ( G  o.func  ( C  1stF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. ) ,  ( ( <. X ,  Y >. ( 2nd `  ( C  2ndF  D ) ) <. Z ,  W >. ) `
 <. R ,  S >. ) >. )
7813, 20, 4, 31, 35, 36, 44cofu2 14075 . . . . . . 7  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  ( G  o.func  ( C  1stF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )  =  ( ( ( ( 1st `  ( C  1stF  D ) ) `  <. X ,  Y >. ) ( 2nd `  G
) ( ( 1st `  ( C  1stF  D )
) `  <. Z ,  W >. ) ) `  ( ( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. Z ,  W >. ) `
 <. R ,  S >. ) ) )
7953, 67oveq12d 6091 . . . . . . . 8  |-  ( ph  ->  ( ( ( 1st `  ( C  1stF  D )
) `  <. X ,  Y >. ) ( 2nd `  G ) ( ( 1st `  ( C  1stF  D ) ) `  <. Z ,  W >. ) )  =  ( X ( 2nd `  G
) Z ) )
8010, 13, 36, 18, 2, 19, 31, 351stf2 14282 . . . . . . . . . 10  |-  ( ph  ->  ( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. Z ,  W >. )  =  ( 1st  |`  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. Z ,  W >. ) ) )
8180fveq1d 5722 . . . . . . . . 9  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. Z ,  W >. ) `
 <. R ,  S >. )  =  ( ( 1st  |`  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D
) ) <. Z ,  W >. ) ) `  <. R ,  S >. ) )
82 fvres 5737 . . . . . . . . . 10  |-  ( <. R ,  S >.  e.  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. Z ,  W >. )  ->  ( ( 1st  |`  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. Z ,  W >. ) ) `  <. R ,  S >. )  =  ( 1st `  <. R ,  S >. ) )
8344, 82syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st  |`  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. Z ,  W >. ) ) `  <. R ,  S >. )  =  ( 1st `  <. R ,  S >. ) )
84 op1stg 6351 . . . . . . . . . 10  |-  ( ( R  e.  ( X H Z )  /\  S  e.  ( Y J W ) )  -> 
( 1st `  <. R ,  S >. )  =  R )
8537, 38, 84syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( 1st `  <. R ,  S >. )  =  R )
8681, 83, 853eqtrd 2471 . . . . . . . 8  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. Z ,  W >. ) `
 <. R ,  S >. )  =  R )
8779, 86fveq12d 5726 . . . . . . 7  |-  ( ph  ->  ( ( ( ( 1st `  ( C  1stF  D ) ) `  <. X ,  Y >. ) ( 2nd `  G
) ( ( 1st `  ( C  1stF  D )
) `  <. Z ,  W >. ) ) `  ( ( <. X ,  Y >. ( 2nd `  ( C  1stF  D ) ) <. Z ,  W >. ) `
 <. R ,  S >. ) )  =  ( ( X ( 2nd `  G ) Z ) `
 R ) )
8878, 87eqtrd 2467 . . . . . 6  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  ( G  o.func  ( C  1stF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )  =  ( ( X ( 2nd `  G
) Z ) `  R ) )
8910, 13, 36, 18, 2, 22, 31, 352ndf2 14285 . . . . . . . 8  |-  ( ph  ->  ( <. X ,  Y >. ( 2nd `  ( C  2ndF  D ) ) <. Z ,  W >. )  =  ( 2nd  |`  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. Z ,  W >. ) ) )
9089fveq1d 5722 . . . . . . 7  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  ( C  2ndF  D ) ) <. Z ,  W >. ) `
 <. R ,  S >. )  =  ( ( 2nd  |`  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D
) ) <. Z ,  W >. ) ) `  <. R ,  S >. ) )
91 fvres 5737 . . . . . . . 8  |-  ( <. R ,  S >.  e.  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. Z ,  W >. )  ->  ( ( 2nd  |`  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. Z ,  W >. ) ) `  <. R ,  S >. )  =  ( 2nd `  <. R ,  S >. ) )
9244, 91syl 16 . . . . . . 7  |-  ( ph  ->  ( ( 2nd  |`  ( <. X ,  Y >. (  Hom  `  ( C  X.c  D ) ) <. Z ,  W >. ) ) `  <. R ,  S >. )  =  ( 2nd `  <. R ,  S >. ) )
93 op2ndg 6352 . . . . . . . 8  |-  ( ( R  e.  ( X H Z )  /\  S  e.  ( Y J W ) )  -> 
( 2nd `  <. R ,  S >. )  =  S )
9437, 38, 93syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( 2nd `  <. R ,  S >. )  =  S )
9590, 92, 943eqtrd 2471 . . . . . 6  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  ( C  2ndF  D ) ) <. Z ,  W >. ) `
 <. R ,  S >. )  =  S )
9688, 95opeq12d 3984 . . . . 5  |-  ( ph  -> 
<. ( ( <. X ,  Y >. ( 2nd `  ( G  o.func  ( C  1stF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. ) ,  ( ( <. X ,  Y >. ( 2nd `  ( C  2ndF  D ) ) <. Z ,  W >. ) `
 <. R ,  S >. ) >.  =  <. ( ( X ( 2nd `  G ) Z ) `
 R ) ,  S >. )
9777, 96eqtrd 2467 . . . 4  |-  ( ph  ->  ( ( <. X ,  Y >. ( 2nd `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )  =  <. ( ( X ( 2nd `  G
) Z ) `  R ) ,  S >. )
9876, 97fveq12d 5726 . . 3  |-  ( ph  ->  ( ( ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. X ,  Y >. ) ( 2nd `  ( D evalF  E ) ) ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. Z ,  W >. ) ) `  (
( <. X ,  Y >. ( 2nd `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )
)  =  ( (
<. ( ( 1st `  G
) `  X ) ,  Y >. ( 2nd `  ( D evalF  E ) ) <. (
( 1st `  G
) `  Z ) ,  W >. ) `  <. ( ( X ( 2nd `  G ) Z ) `
 R ) ,  S >. ) )
99 df-ov 6076 . . 3  |-  ( ( ( X ( 2nd `  G ) Z ) `
 R ) (
<. ( ( 1st `  G
) `  X ) ,  Y >. ( 2nd `  ( D evalF  E ) ) <. (
( 1st `  G
) `  Z ) ,  W >. ) S )  =  ( ( <.
( ( 1st `  G
) `  X ) ,  Y >. ( 2nd `  ( D evalF  E ) ) <. (
( 1st `  G
) `  Z ) ,  W >. ) `  <. ( ( X ( 2nd `  G ) Z ) `
 R ) ,  S >. )
10098, 99syl6eqr 2485 . 2  |-  ( ph  ->  ( ( ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. X ,  Y >. ) ( 2nd `  ( D evalF  E ) ) ( ( 1st `  ( ( G  o.func  ( C  1stF  D )
) ⟨,⟩F  ( C  2ndF  D ) ) ) `
 <. Z ,  W >. ) ) `  (
( <. X ,  Y >. ( 2nd `  (
( G  o.func  ( C  1stF  D ) ) ⟨,⟩F  ( C  2ndF  D )
) ) <. Z ,  W >. ) `  <. R ,  S >. )
)  =  ( ( ( X ( 2nd `  G ) Z ) `
 R ) (
<. ( ( 1st `  G
) `  X ) ,  Y >. ( 2nd `  ( D evalF  E ) ) <. (
( 1st `  G
) `  Z ) ,  W >. ) S ) )
101 eqid 2435 . . 3  |-  (comp `  E )  =  (comp `  E )
102 eqid 2435 . . 3  |-  ( D Nat 
E )  =  ( D Nat  E )
10326fucbas 14149 . . . . 5  |-  ( D 
Func  E )  =  (
Base `  ( D FuncCat  E ) )
104 relfunc 14051 . . . . . 6  |-  Rel  ( C  Func  ( D FuncCat  E
) )
105 1st2ndbr 6388 . . . . . 6  |-  ( ( Rel  ( C  Func  ( D FuncCat  E ) )  /\  G  e.  ( C  Func  ( D FuncCat  E )
) )  ->  ( 1st `  G ) ( C  Func  ( D FuncCat  E ) ) ( 2nd `  G ) )
106104, 4, 105sylancr 645 . . . . 5  |-  ( ph  ->  ( 1st `  G
) ( C  Func  ( D FuncCat  E ) ) ( 2nd `  G ) )
10711, 103, 106funcf1 14055 . . . 4  |-  ( ph  ->  ( 1st `  G
) : A --> ( D 
Func  E ) )
108107, 28ffvelrnd 5863 . . 3  |-  ( ph  ->  ( ( 1st `  G
) `  X )  e.  ( D  Func  E
) )
109107, 32ffvelrnd 5863 . . 3  |-  ( ph  ->  ( ( 1st `  G
) `  Z )  e.  ( D  Func  E
) )
110 eqid 2435 . . 3  |-  ( <.
( ( 1st `  G
) `  X ) ,  Y >. ( 2nd `  ( D evalF  E ) ) <. (
( 1st `  G
) `  Z ) ,  W >. )  =  (
<. ( ( 1st `  G
) `  X ) ,  Y >. ( 2nd `  ( D evalF  E ) ) <. (
( 1st `  G
) `  Z ) ,  W >. )
11126, 102fuchom 14150 . . . . 5  |-  ( D Nat 
E )  =  (  Hom  `  ( D FuncCat  E ) )
11211, 41, 111, 106, 28, 32funcf2 14057 . . . 4  |-  ( ph  ->  ( X ( 2nd `  G ) Z ) : ( X H Z ) --> ( ( ( 1st `  G
) `  X )
( D Nat  E ) ( ( 1st `  G
) `  Z )
) )
113112, 37ffvelrnd 5863 . . 3  |-  ( ph  ->  ( ( X ( 2nd `  G ) Z ) `  R
)  e.  ( ( ( 1st `  G
) `  X )
( D Nat  E ) ( ( 1st `  G
) `  Z )
) )
11425, 2, 3, 12, 42, 101, 102, 108, 109, 29, 33, 110, 113, 38evlf2val 14308 . 2  |-  ( ph  ->  ( ( ( X ( 2nd `  G
) Z ) `  R ) ( <.
( ( 1st `  G
) `  X ) ,  Y >. ( 2nd `  ( D evalF  E ) ) <. (
( 1st `  G
) `  Z ) ,  W >. ) S )  =  ( ( ( ( X ( 2nd `  G ) Z ) `
 R ) `  W ) ( <.
( ( 1st `  (
( 1st `  G
) `  X )
) `  Y ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  W ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Z )
) `  W )
) ( ( Y ( 2nd `  (
( 1st `  G
) `  X )
) W ) `  S ) ) )
11547, 100, 1143eqtrd 2471 1  |-  ( ph  ->  ( R ( <. X ,  Y >. ( 2nd `  F )
<. Z ,  W >. ) S )  =  ( ( ( ( X ( 2nd `  G
) Z ) `  R ) `  W
) ( <. (
( 1st `  (
( 1st `  G
) `  X )
) `  Y ) ,  ( ( 1st `  ( ( 1st `  G
) `  X )
) `  W ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  Z )
) `  W )
) ( ( Y ( 2nd `  (
( 1st `  G
) `  X )
) W ) `  S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   <.cop 3809   class class class wbr 4204    X. cxp 4868    |` cres 4872   Rel wrel 4875   ` cfv 5446  (class class class)co 6073   1stc1st 6339   2ndc2nd 6340   <"cs3 11798   Basecbs 13461    Hom chom 13532  compcco 13533   Catccat 13881    Func cfunc 14043    o.func ccofu 14045   Nat cnat 14130   FuncCat cfuc 14131    X.c cxpc 14257    1stF c1stf 14258    2ndF c2ndf 14259   ⟨,⟩F cprf 14260   evalF cevlf 14298   uncurryF cuncf 14300
This theorem is referenced by:  curfuncf  14327  uncfcurf  14328
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-fz 11036  df-fzo 11128  df-hash 11611  df-word 11715  df-concat 11716  df-s1 11717  df-s2 11804  df-s3 11805  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-hom 13545  df-cco 13546  df-cat 13885  df-cid 13886  df-func 14047  df-cofu 14049  df-nat 14132  df-fuc 14133  df-xpc 14261  df-1stf 14262  df-2ndf 14263  df-prf 14264  df-evlf 14302  df-uncf 14304
  Copyright terms: Public domain W3C validator