Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncfcurf Structured version   Unicode version

Theorem uncfcurf 14336
 Description: Cancellation of uncurry with curry. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfcurf.g curryF
uncfcurf.c
uncfcurf.d
uncfcurf.f c
Assertion
Ref Expression
uncfcurf uncurryF

Proof of Theorem uncfcurf
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2436 . . . . . . 7 uncurryF uncurryF
2 uncfcurf.d . . . . . . . 8
32adantr 452 . . . . . . 7
4 uncfcurf.f . . . . . . . . . 10 c
5 funcrcl 14060 . . . . . . . . . 10 c c
64, 5syl 16 . . . . . . . . 9 c
76simprd 450 . . . . . . . 8
87adantr 452 . . . . . . 7
9 uncfcurf.g . . . . . . . . 9 curryF
10 eqid 2436 . . . . . . . . 9 FuncCat FuncCat
11 uncfcurf.c . . . . . . . . 9
129, 10, 11, 2, 4curfcl 14329 . . . . . . . 8 FuncCat
1312adantr 452 . . . . . . 7 FuncCat
14 eqid 2436 . . . . . . 7
15 eqid 2436 . . . . . . 7
16 simprl 733 . . . . . . 7
17 simprr 734 . . . . . . 7
181, 3, 8, 13, 14, 15, 16, 17uncf1 14333 . . . . . 6 uncurryF
1911adantr 452 . . . . . . 7
204adantr 452 . . . . . . 7 c
21 eqid 2436 . . . . . . 7
229, 14, 19, 3, 20, 15, 16, 21, 17curf11 14323 . . . . . 6
2318, 22eqtrd 2468 . . . . 5 uncurryF
2423ralrimivva 2798 . . . 4 uncurryF
25 eqid 2436 . . . . . . . 8 c c
2625, 14, 15xpcbas 14275 . . . . . . 7 c
27 eqid 2436 . . . . . . 7
28 relfunc 14059 . . . . . . . 8 c
291, 2, 7, 12uncfcl 14332 . . . . . . . 8 uncurryF c
30 1st2ndbr 6396 . . . . . . . 8 c uncurryF c uncurryF c uncurryF
3128, 29, 30sylancr 645 . . . . . . 7 uncurryF c uncurryF
3226, 27, 31funcf1 14063 . . . . . 6 uncurryF
33 ffn 5591 . . . . . 6 uncurryF uncurryF
3432, 33syl 16 . . . . 5 uncurryF
35 1st2ndbr 6396 . . . . . . . 8 c c c
3628, 4, 35sylancr 645 . . . . . . 7 c
3726, 27, 36funcf1 14063 . . . . . 6
38 ffn 5591 . . . . . 6
3937, 38syl 16 . . . . 5
40 eqfnov2 6177 . . . . 5 uncurryF uncurryF uncurryF
4134, 39, 40syl2anc 643 . . . 4 uncurryF uncurryF
4224, 41mpbird 224 . . 3 uncurryF
432ad3antrrr 711 . . . . . . . . . . 11
447ad3antrrr 711 . . . . . . . . . . 11
4512ad3antrrr 711 . . . . . . . . . . 11 FuncCat
4616adantr 452 . . . . . . . . . . . 12
4746adantr 452 . . . . . . . . . . 11
4817adantr 452 . . . . . . . . . . . 12
4948adantr 452 . . . . . . . . . . 11
50 eqid 2436 . . . . . . . . . . 11
51 eqid 2436 . . . . . . . . . . 11
52 simprl 733 . . . . . . . . . . . 12
5352adantr 452 . . . . . . . . . . 11
54 simprr 734 . . . . . . . . . . . 12
5554adantr 452 . . . . . . . . . . 11
56 simprl 733 . . . . . . . . . . 11
57 simprr 734 . . . . . . . . . . 11
581, 43, 44, 45, 14, 15, 47, 49, 50, 51, 53, 55, 56, 57uncf2 14334 . . . . . . . . . 10 uncurryF comp
5911ad3antrrr 711 . . . . . . . . . . . . . . . 16
604ad3antrrr 711 . . . . . . . . . . . . . . . 16 c
619, 14, 59, 43, 60, 15, 47, 21, 49curf11 14323 . . . . . . . . . . . . . . 15
62 df-ov 6084 . . . . . . . . . . . . . . 15
6361, 62syl6eq 2484 . . . . . . . . . . . . . 14
649, 14, 59, 43, 60, 15, 47, 21, 55curf11 14323 . . . . . . . . . . . . . . 15
65 df-ov 6084 . . . . . . . . . . . . . . 15
6664, 65syl6eq 2484 . . . . . . . . . . . . . 14
6763, 66opeq12d 3992 . . . . . . . . . . . . 13
68 eqid 2436 . . . . . . . . . . . . . . 15
699, 14, 59, 43, 60, 15, 53, 68, 55curf11 14323 . . . . . . . . . . . . . 14
70 df-ov 6084 . . . . . . . . . . . . . 14
7169, 70syl6eq 2484 . . . . . . . . . . . . 13
7267, 71oveq12d 6099 . . . . . . . . . . . 12 comp comp
73 eqid 2436 . . . . . . . . . . . . . 14
74 eqid 2436 . . . . . . . . . . . . . 14
759, 14, 59, 43, 60, 15, 50, 73, 47, 53, 56, 74, 55curf2val 14327 . . . . . . . . . . . . 13
76 df-ov 6084 . . . . . . . . . . . . 13
7775, 76syl6eq 2484 . . . . . . . . . . . 12
78 eqid 2436 . . . . . . . . . . . . . 14
799, 14, 59, 43, 60, 15, 47, 21, 49, 51, 78, 55, 57curf12 14324 . . . . . . . . . . . . 13
80 df-ov 6084 . . . . . . . . . . . . 13
8179, 80syl6eq 2484 . . . . . . . . . . . 12
8272, 77, 81oveq123d 6102 . . . . . . . . . . 11 comp comp
83 eqid 2436 . . . . . . . . . . . 12 c c
84 eqid 2436 . . . . . . . . . . . 12 comp c comp c
85 eqid 2436 . . . . . . . . . . . 12 comp comp
8636ad2antrr 707 . . . . . . . . . . . . 13 c
8786adantr 452 . . . . . . . . . . . 12 c
88 opelxpi 4910 . . . . . . . . . . . . . 14
8988ad2antlr 708 . . . . . . . . . . . . 13
9089adantr 452 . . . . . . . . . . . 12
91 opelxpi 4910 . . . . . . . . . . . . 13
9247, 55, 91syl2anc 643 . . . . . . . . . . . 12
93 opelxpi 4910 . . . . . . . . . . . . . 14
9493adantl 453 . . . . . . . . . . . . 13
9594adantr 452 . . . . . . . . . . . 12
9614, 50, 78, 59, 47catidcl 13907 . . . . . . . . . . . . . 14
97 opelxpi 4910 . . . . . . . . . . . . . 14
9896, 57, 97syl2anc 643 . . . . . . . . . . . . 13
9925, 14, 15, 50, 51, 47, 49, 47, 55, 83xpchom2 14283 . . . . . . . . . . . . 13 c
10098, 99eleqtrrd 2513 . . . . . . . . . . . 12 c
10115, 51, 73, 43, 55catidcl 13907 . . . . . . . . . . . . . 14
102 opelxpi 4910 . . . . . . . . . . . . . 14
10356, 101, 102syl2anc 643 . . . . . . . . . . . . 13
10425, 14, 15, 50, 51, 47, 55, 53, 55, 83xpchom2 14283 . . . . . . . . . . . . 13 c
105103, 104eleqtrrd 2513 . . . . . . . . . . . 12 c
10626, 83, 84, 85, 87, 90, 92, 95, 100, 105funcco 14068 . . . . . . . . . . 11 comp c comp
107 eqid 2436 . . . . . . . . . . . . . . 15 comp comp
108 eqid 2436 . . . . . . . . . . . . . . 15 comp comp
10925, 14, 15, 50, 51, 47, 49, 47, 55, 107, 108, 84, 53, 55, 96, 57, 56, 101xpcco2 14284 . . . . . . . . . . . . . 14 comp c comp comp
110109fveq2d 5732 . . . . . . . . . . . . 13 comp c comp comp
111 df-ov 6084 . . . . . . . . . . . . 13 comp comp comp comp
112110, 111syl6eqr 2486 . . . . . . . . . . . 12 comp c comp comp
11314, 50, 78, 59, 47, 107, 53, 56catrid 13909 . . . . . . . . . . . . 13 comp
11415, 51, 73, 43, 49, 108, 55, 57catlid 13908 . . . . . . . . . . . . 13 comp
115113, 114oveq12d 6099 . . . . . . . . . . . 12 comp comp
116112, 115eqtrd 2468 . . . . . . . . . . 11 comp c
11782, 106, 1163eqtr2d 2474 . . . . . . . . . 10 comp
11858, 117eqtrd 2468 . . . . . . . . 9 uncurryF
119118ralrimivva 2798 . . . . . . . 8 uncurryF
120 eqid 2436 . . . . . . . . . . . 12
12131ad2antrr 707 . . . . . . . . . . . 12 uncurryF c uncurryF
12226, 83, 120, 121, 89, 94funcf2 14065 . . . . . . . . . . 11 uncurryF c uncurryF uncurryF
12325, 14, 15, 50, 51, 46, 48, 52, 54, 83xpchom2 14283 . . . . . . . . . . . 12 c
124123feq2d 5581 . . . . . . . . . . 11 uncurryF c uncurryF uncurryF uncurryF uncurryF uncurryF
125122, 124mpbid 202 . . . . . . . . . 10 uncurryF uncurryF uncurryF
126 ffn 5591 . . . . . . . . . 10 uncurryF uncurryF uncurryF uncurryF
127125, 126syl 16 . . . . . . . . 9 uncurryF
12826, 83, 120, 86, 89, 94funcf2 14065 . . . . . . . . . . 11 c
129123feq2d 5581 . . . . . . . . . . 11 c
130128, 129mpbid 202 . . . . . . . . . 10
131 ffn 5591 . . . . . . . . . 10
132130, 131syl 16 . . . . . . . . 9
133 eqfnov2 6177 . . . . . . . . 9 uncurryF uncurryF uncurryF
134127, 132, 133syl2anc 643 . . . . . . . 8 uncurryF uncurryF
135119, 134mpbird 224 . . . . . . 7 uncurryF
136135ralrimivva 2798 . . . . . 6 uncurryF
137136ralrimivva 2798 . . . . 5 uncurryF
138 oveq2 6089 . . . . . . . . 9 uncurryF uncurryF
139 oveq2 6089 . . . . . . . . 9
140138, 139eqeq12d 2450 . . . . . . . 8 uncurryF uncurryF
141140ralxp 5016 . . . . . . 7 uncurryF uncurryF
142 oveq1 6088 . . . . . . . . 9 uncurryF uncurryF
143 oveq1 6088 . . . . . . . . 9
144142, 143eqeq12d 2450 . . . . . . . 8 uncurryF uncurryF
1451442ralbidv 2747 . . . . . . 7 uncurryF uncurryF
146141, 145syl5bb 249 . . . . . 6 uncurryF uncurryF
147146ralxp 5016 . . . . 5 uncurryF uncurryF
148137, 147sylibr 204 . . . 4 uncurryF
14926, 31funcfn2 14066 . . . . 5 uncurryF
15026, 36funcfn2 14066 . . . . 5
151 eqfnov2 6177 . . . . 5 uncurryF uncurryF uncurryF
152149, 150, 151syl2anc 643 . . . 4 uncurryF uncurryF
153148, 152mpbird 224 . . 3 uncurryF
15442, 153opeq12d 3992 . 2 uncurryF uncurryF
155 1st2nd 6393 . . 3 c uncurryF c uncurryF uncurryF uncurryF
15628, 29, 155sylancr 645 . 2 uncurryF uncurryF uncurryF
157 1st2nd 6393 . . 3 c c
15828, 4, 157sylancr 645 . 2
159154, 156, 1583eqtr4d 2478 1 uncurryF
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652   wcel 1725  wral 2705  cop 3817   class class class wbr 4212   cxp 4876   wrel 4883   wfn 5449  wf 5450  cfv 5454  (class class class)co 6081  c1st 6347  c2nd 6348  cs3 11806  cbs 13469   chom 13540  compcco 13541  ccat 13889  ccid 13890   cfunc 14051   FuncCat cfuc 14139   c cxpc 14265   curryF ccurf 14307   uncurryF cuncf 14308 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-fz 11044  df-fzo 11136  df-hash 11619  df-word 11723  df-concat 11724  df-s1 11725  df-s2 11812  df-s3 11813  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-hom 13553  df-cco 13554  df-cat 13893  df-cid 13894  df-func 14055  df-cofu 14057  df-nat 14140  df-fuc 14141  df-xpc 14269  df-1stf 14270  df-2ndf 14271  df-prf 14272  df-evlf 14310  df-curf 14311  df-uncf 14312
 Copyright terms: Public domain W3C validator