MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncmp Unicode version

Theorem uncmp 17146
Description: The union of two compact sets is compact. (Contributed by Jeff Hankins, 30-Jan-2010.)
Hypothesis
Ref Expression
uncmp.1  |-  X  = 
U. J
Assertion
Ref Expression
uncmp  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( ( Jt  S )  e.  Comp  /\  ( Jt  T )  e.  Comp ) )  ->  J  e.  Comp )

Proof of Theorem uncmp
Dummy variables  c 
d  m  n  r  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 730 . 2  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( ( Jt  S )  e.  Comp  /\  ( Jt  T )  e.  Comp ) )  ->  J  e.  Top )
2 simpll 730 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  J  e.  Top )
3 ssun1 3351 . . . . . . . . . 10  |-  S  C_  ( S  u.  T
)
4 sseq2 3213 . . . . . . . . . 10  |-  ( X  =  ( S  u.  T )  ->  ( S  C_  X  <->  S  C_  ( S  u.  T )
) )
53, 4mpbiri 224 . . . . . . . . 9  |-  ( X  =  ( S  u.  T )  ->  S  C_  X )
65ad2antlr 707 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  S  C_  X
)
7 uncmp.1 . . . . . . . . 9  |-  X  = 
U. J
87cmpsub 17143 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( Jt  S )  e.  Comp  <->  A. m  e.  ~P  J ( S  C_  U. m  ->  E. n  e.  ( ~P m  i^i 
Fin ) S  C_  U. n ) ) )
92, 6, 8syl2anc 642 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( ( Jt  S )  e.  Comp  <->  A. m  e.  ~P  J ( S 
C_  U. m  ->  E. n  e.  ( ~P m  i^i 
Fin ) S  C_  U. n ) ) )
10 simprr 733 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  X  =  U. c )
116, 10sseqtrd 3227 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  S  C_  U. c
)
12 unieq 3852 . . . . . . . . . . . 12  |-  ( m  =  c  ->  U. m  =  U. c )
1312sseq2d 3219 . . . . . . . . . . 11  |-  ( m  =  c  ->  ( S  C_  U. m  <->  S  C_  U. c
) )
14 pweq 3641 . . . . . . . . . . . . 13  |-  ( m  =  c  ->  ~P m  =  ~P c
)
1514ineq1d 3382 . . . . . . . . . . . 12  |-  ( m  =  c  ->  ( ~P m  i^i  Fin )  =  ( ~P c  i^i  Fin ) )
1615rexeqdv 2756 . . . . . . . . . . 11  |-  ( m  =  c  ->  ( E. n  e.  ( ~P m  i^i  Fin ) S  C_  U. n  <->  E. n  e.  ( ~P c  i^i 
Fin ) S  C_  U. n ) )
1713, 16imbi12d 311 . . . . . . . . . 10  |-  ( m  =  c  ->  (
( S  C_  U. m  ->  E. n  e.  ( ~P m  i^i  Fin ) S  C_  U. n
)  <->  ( S  C_  U. c  ->  E. n  e.  ( ~P c  i^i 
Fin ) S  C_  U. n ) ) )
1817rspcv 2893 . . . . . . . . 9  |-  ( c  e.  ~P J  -> 
( A. m  e. 
~P  J ( S 
C_  U. m  ->  E. n  e.  ( ~P m  i^i 
Fin ) S  C_  U. n )  ->  ( S  C_  U. c  ->  E. n  e.  ( ~P c  i^i  Fin ) S  C_  U. n ) ) )
1918ad2antrl 708 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( A. m  e.  ~P  J ( S 
C_  U. m  ->  E. n  e.  ( ~P m  i^i 
Fin ) S  C_  U. n )  ->  ( S  C_  U. c  ->  E. n  e.  ( ~P c  i^i  Fin ) S  C_  U. n ) ) )
2011, 19mpid 37 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( A. m  e.  ~P  J ( S 
C_  U. m  ->  E. n  e.  ( ~P m  i^i 
Fin ) S  C_  U. n )  ->  E. n  e.  ( ~P c  i^i 
Fin ) S  C_  U. n ) )
219, 20sylbid 206 . . . . . 6  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( ( Jt  S )  e.  Comp  ->  E. n  e.  ( ~P c  i^i  Fin ) S  C_  U. n ) )
22 ssun2 3352 . . . . . . . . . 10  |-  T  C_  ( S  u.  T
)
23 sseq2 3213 . . . . . . . . . 10  |-  ( X  =  ( S  u.  T )  ->  ( T  C_  X  <->  T  C_  ( S  u.  T )
) )
2422, 23mpbiri 224 . . . . . . . . 9  |-  ( X  =  ( S  u.  T )  ->  T  C_  X )
2524ad2antlr 707 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  T  C_  X
)
267cmpsub 17143 . . . . . . . 8  |-  ( ( J  e.  Top  /\  T  C_  X )  -> 
( ( Jt  T )  e.  Comp  <->  A. r  e.  ~P  J ( T  C_  U. r  ->  E. s  e.  ( ~P r  i^i 
Fin ) T  C_  U. s ) ) )
272, 25, 26syl2anc 642 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( ( Jt  T )  e.  Comp  <->  A. r  e.  ~P  J ( T 
C_  U. r  ->  E. s  e.  ( ~P r  i^i 
Fin ) T  C_  U. s ) ) )
2825, 10sseqtrd 3227 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  T  C_  U. c
)
29 unieq 3852 . . . . . . . . . . . 12  |-  ( r  =  c  ->  U. r  =  U. c )
3029sseq2d 3219 . . . . . . . . . . 11  |-  ( r  =  c  ->  ( T  C_  U. r  <->  T  C_  U. c
) )
31 pweq 3641 . . . . . . . . . . . . 13  |-  ( r  =  c  ->  ~P r  =  ~P c
)
3231ineq1d 3382 . . . . . . . . . . . 12  |-  ( r  =  c  ->  ( ~P r  i^i  Fin )  =  ( ~P c  i^i  Fin ) )
3332rexeqdv 2756 . . . . . . . . . . 11  |-  ( r  =  c  ->  ( E. s  e.  ( ~P r  i^i  Fin ) T  C_  U. s  <->  E. s  e.  ( ~P c  i^i 
Fin ) T  C_  U. s ) )
3430, 33imbi12d 311 . . . . . . . . . 10  |-  ( r  =  c  ->  (
( T  C_  U. r  ->  E. s  e.  ( ~P r  i^i  Fin ) T  C_  U. s
)  <->  ( T  C_  U. c  ->  E. s  e.  ( ~P c  i^i 
Fin ) T  C_  U. s ) ) )
3534rspcv 2893 . . . . . . . . 9  |-  ( c  e.  ~P J  -> 
( A. r  e. 
~P  J ( T 
C_  U. r  ->  E. s  e.  ( ~P r  i^i 
Fin ) T  C_  U. s )  ->  ( T  C_  U. c  ->  E. s  e.  ( ~P c  i^i  Fin ) T  C_  U. s ) ) )
3635ad2antrl 708 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( A. r  e.  ~P  J ( T 
C_  U. r  ->  E. s  e.  ( ~P r  i^i 
Fin ) T  C_  U. s )  ->  ( T  C_  U. c  ->  E. s  e.  ( ~P c  i^i  Fin ) T  C_  U. s ) ) )
3728, 36mpid 37 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( A. r  e.  ~P  J ( T 
C_  U. r  ->  E. s  e.  ( ~P r  i^i 
Fin ) T  C_  U. s )  ->  E. s  e.  ( ~P c  i^i 
Fin ) T  C_  U. s ) )
3827, 37sylbid 206 . . . . . 6  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( ( Jt  T )  e.  Comp  ->  E. s  e.  ( ~P c  i^i  Fin ) T  C_  U. s ) )
39 reeanv 2720 . . . . . . 7  |-  ( E. n  e.  ( ~P c  i^i  Fin ) E. s  e.  ( ~P c  i^i  Fin )
( S  C_  U. n  /\  T  C_  U. s
)  <->  ( E. n  e.  ( ~P c  i^i 
Fin ) S  C_  U. n  /\  E. s  e.  ( ~P c  i^i 
Fin ) T  C_  U. s ) )
40 elin 3371 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ~P c  i^i  Fin )  <->  ( n  e.  ~P c  /\  n  e.  Fin ) )
4140simplbi 446 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ( ~P c  i^i  Fin )  ->  n  e.  ~P c )
42 elpwi 3646 . . . . . . . . . . . . . . . 16  |-  ( n  e.  ~P c  ->  n  C_  c )
4341, 42syl 15 . . . . . . . . . . . . . . 15  |-  ( n  e.  ( ~P c  i^i  Fin )  ->  n  C_  c )
44 elin 3371 . . . . . . . . . . . . . . . . 17  |-  ( s  e.  ( ~P c  i^i  Fin )  <->  ( s  e.  ~P c  /\  s  e.  Fin ) )
4544simplbi 446 . . . . . . . . . . . . . . . 16  |-  ( s  e.  ( ~P c  i^i  Fin )  ->  s  e.  ~P c )
46 elpwi 3646 . . . . . . . . . . . . . . . 16  |-  ( s  e.  ~P c  -> 
s  C_  c )
4745, 46syl 15 . . . . . . . . . . . . . . 15  |-  ( s  e.  ( ~P c  i^i  Fin )  ->  s  C_  c )
4843, 47anim12i 549 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ~P c  i^i  Fin )  /\  s  e.  ( ~P c  i^i  Fin )
)  ->  ( n  C_  c  /\  s  C_  c ) )
4948ad2antrl 708 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
( n  C_  c  /\  s  C_  c ) )
50 unss 3362 . . . . . . . . . . . . 13  |-  ( ( n  C_  c  /\  s  C_  c )  <->  ( n  u.  s )  C_  c
)
5149, 50sylib 188 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
( n  u.  s
)  C_  c )
5240simprbi 450 . . . . . . . . . . . . . 14  |-  ( n  e.  ( ~P c  i^i  Fin )  ->  n  e.  Fin )
5344simprbi 450 . . . . . . . . . . . . . 14  |-  ( s  e.  ( ~P c  i^i  Fin )  ->  s  e.  Fin )
54 unfi 7140 . . . . . . . . . . . . . 14  |-  ( ( n  e.  Fin  /\  s  e.  Fin )  ->  ( n  u.  s
)  e.  Fin )
5552, 53, 54syl2an 463 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ~P c  i^i  Fin )  /\  s  e.  ( ~P c  i^i  Fin )
)  ->  ( n  u.  s )  e.  Fin )
5655ad2antrl 708 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
( n  u.  s
)  e.  Fin )
5751, 56jca 518 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
( ( n  u.  s )  C_  c  /\  ( n  u.  s
)  e.  Fin )
)
58 elin 3371 . . . . . . . . . . . 12  |-  ( ( n  u.  s )  e.  ( ~P c  i^i  Fin )  <->  ( (
n  u.  s )  e.  ~P c  /\  ( n  u.  s
)  e.  Fin )
)
59 vex 2804 . . . . . . . . . . . . . 14  |-  c  e. 
_V
6059elpw2 4191 . . . . . . . . . . . . 13  |-  ( ( n  u.  s )  e.  ~P c  <->  ( n  u.  s )  C_  c
)
6160anbi1i 676 . . . . . . . . . . . 12  |-  ( ( ( n  u.  s
)  e.  ~P c  /\  ( n  u.  s
)  e.  Fin )  <->  ( ( n  u.  s
)  C_  c  /\  ( n  u.  s
)  e.  Fin )
)
6258, 61bitr2i 241 . . . . . . . . . . 11  |-  ( ( ( n  u.  s
)  C_  c  /\  ( n  u.  s
)  e.  Fin )  <->  ( n  u.  s )  e.  ( ~P c  i^i  Fin ) )
6357, 62sylib 188 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
( n  u.  s
)  e.  ( ~P c  i^i  Fin )
)
64 simpllr 735 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  ->  X  =  ( S  u.  T ) )
65 ssun3 3353 . . . . . . . . . . . . . . . 16  |-  ( S 
C_  U. n  ->  S  C_  ( U. n  u. 
U. s ) )
66 ssun4 3354 . . . . . . . . . . . . . . . 16  |-  ( T 
C_  U. s  ->  T  C_  ( U. n  u. 
U. s ) )
6765, 66anim12i 549 . . . . . . . . . . . . . . 15  |-  ( ( S  C_  U. n  /\  T  C_  U. s
)  ->  ( S  C_  ( U. n  u. 
U. s )  /\  T  C_  ( U. n  u.  U. s ) ) )
6867ad2antll 709 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
( S  C_  ( U. n  u.  U. s
)  /\  T  C_  ( U. n  u.  U. s
) ) )
69 unss 3362 . . . . . . . . . . . . . 14  |-  ( ( S  C_  ( U. n  u.  U. s
)  /\  T  C_  ( U. n  u.  U. s
) )  <->  ( S  u.  T )  C_  ( U. n  u.  U. s
) )
7068, 69sylib 188 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
( S  u.  T
)  C_  ( U. n  u.  U. s
) )
7164, 70eqsstrd 3225 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  ->  X  C_  ( U. n  u.  U. s ) )
72 uniun 3862 . . . . . . . . . . . 12  |-  U. (
n  u.  s )  =  ( U. n  u.  U. s )
7371, 72syl6sseqr 3238 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  ->  X  C_  U. ( n  u.  s ) )
74 elpwi 3646 . . . . . . . . . . . . . . 15  |-  ( c  e.  ~P J  -> 
c  C_  J )
7574adantr 451 . . . . . . . . . . . . . 14  |-  ( ( c  e.  ~P J  /\  X  =  U. c )  ->  c  C_  J )
7675ad2antlr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
c  C_  J )
7751, 76sstrd 3202 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  -> 
( n  u.  s
)  C_  J )
78 uniss 3864 . . . . . . . . . . . . 13  |-  ( ( n  u.  s ) 
C_  J  ->  U. (
n  u.  s ) 
C_  U. J )
7978, 7syl6sseqr 3238 . . . . . . . . . . . 12  |-  ( ( n  u.  s ) 
C_  J  ->  U. (
n  u.  s ) 
C_  X )
8077, 79syl 15 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  ->  U. ( n  u.  s
)  C_  X )
8173, 80eqssd 3209 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  ->  X  =  U. (
n  u.  s ) )
82 unieq 3852 . . . . . . . . . . . 12  |-  ( d  =  ( n  u.  s )  ->  U. d  =  U. ( n  u.  s ) )
8382eqeq2d 2307 . . . . . . . . . . 11  |-  ( d  =  ( n  u.  s )  ->  ( X  =  U. d  <->  X  =  U. ( n  u.  s ) ) )
8483rspcev 2897 . . . . . . . . . 10  |-  ( ( ( n  u.  s
)  e.  ( ~P c  i^i  Fin )  /\  X  =  U. ( n  u.  s
) )  ->  E. d  e.  ( ~P c  i^i 
Fin ) X  = 
U. d )
8563, 81, 84syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Top  /\  X  =  ( S  u.  T
) )  /\  (
c  e.  ~P J  /\  X  =  U. c ) )  /\  ( ( n  e.  ( ~P c  i^i 
Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  /\  ( S  C_  U. n  /\  T  C_  U. s
) ) )  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
)
8685exp32 588 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( ( n  e.  ( ~P c  i^i  Fin )  /\  s  e.  ( ~P c  i^i 
Fin ) )  -> 
( ( S  C_  U. n  /\  T  C_  U. s )  ->  E. d  e.  ( ~P c  i^i 
Fin ) X  = 
U. d ) ) )
8786rexlimdvv 2686 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( E. n  e.  ( ~P c  i^i 
Fin ) E. s  e.  ( ~P c  i^i 
Fin ) ( S 
C_  U. n  /\  T  C_ 
U. s )  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
) )
8839, 87syl5bir 209 . . . . . 6  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( ( E. n  e.  ( ~P c  i^i  Fin ) S  C_  U. n  /\  E. s  e.  ( ~P c  i^i  Fin ) T  C_  U. s )  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) )
8921, 38, 88syl2and 469 . . . . 5  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( c  e. 
~P J  /\  X  =  U. c ) )  ->  ( ( ( Jt  S )  e.  Comp  /\  ( Jt  T )  e.  Comp )  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) )
9089impancom 427 . . . 4  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( ( Jt  S )  e.  Comp  /\  ( Jt  T )  e.  Comp ) )  ->  (
( c  e.  ~P J  /\  X  =  U. c )  ->  E. d  e.  ( ~P c  i^i 
Fin ) X  = 
U. d ) )
9190exp3a 425 . . 3  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( ( Jt  S )  e.  Comp  /\  ( Jt  T )  e.  Comp ) )  ->  (
c  e.  ~P J  ->  ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d ) ) )
9291ralrimiv 2638 . 2  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( ( Jt  S )  e.  Comp  /\  ( Jt  T )  e.  Comp ) )  ->  A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
) )
937iscmp 17131 . 2  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. c  e.  ~P  J ( X  =  U. c  ->  E. d  e.  ( ~P c  i^i  Fin ) X  =  U. d
) ) )
941, 92, 93sylanbrc 645 1  |-  ( ( ( J  e.  Top  /\  X  =  ( S  u.  T ) )  /\  ( ( Jt  S )  e.  Comp  /\  ( Jt  T )  e.  Comp ) )  ->  J  e.  Comp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    u. cun 3163    i^i cin 3164    C_ wss 3165   ~Pcpw 3638   U.cuni 3843  (class class class)co 5874   Fincfn 6879   ↾t crest 13341   Topctop 16647   Compccmp 17129
This theorem is referenced by:  fiuncmp  17147
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-fin 6883  df-fi 7181  df-rest 13343  df-topgen 13360  df-top 16652  df-bases 16654  df-topon 16655  df-cmp 17130
  Copyright terms: Public domain W3C validator