MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undisj1 Unicode version

Theorem undisj1 3615
Description: The union of disjoint classes is disjoint. (Contributed by NM, 26-Sep-2004.)
Assertion
Ref Expression
undisj1  |-  ( ( ( A  i^i  C
)  =  (/)  /\  ( B  i^i  C )  =  (/) )  <->  ( ( A  u.  B )  i^i 
C )  =  (/) )

Proof of Theorem undisj1
StepHypRef Expression
1 un00 3599 . 2  |-  ( ( ( A  i^i  C
)  =  (/)  /\  ( B  i^i  C )  =  (/) )  <->  ( ( A  i^i  C )  u.  ( B  i^i  C
) )  =  (/) )
2 indir 3525 . . 3  |-  ( ( A  u.  B )  i^i  C )  =  ( ( A  i^i  C )  u.  ( B  i^i  C ) )
32eqeq1i 2387 . 2  |-  ( ( ( A  u.  B
)  i^i  C )  =  (/)  <->  ( ( A  i^i  C )  u.  ( B  i^i  C
) )  =  (/) )
41, 3bitr4i 244 1  |-  ( ( ( A  i^i  C
)  =  (/)  /\  ( B  i^i  C )  =  (/) )  <->  ( ( A  u.  B )  i^i 
C )  =  (/) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1649    u. cun 3254    i^i cin 3255   (/)c0 3564
This theorem is referenced by:  funtp  5436  f1oun2prg  11784
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-v 2894  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565
  Copyright terms: Public domain W3C validator