Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  undisj2 Structured version   Unicode version

Theorem undisj2 3680
 Description: The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.)
Assertion
Ref Expression
undisj2

Proof of Theorem undisj2
StepHypRef Expression
1 un00 3663 . 2
2 indi 3587 . . 3
32eqeq1i 2443 . 2
41, 3bitr4i 244 1
 Colors of variables: wff set class Syntax hints:   wb 177   wa 359   wceq 1652   cun 3318   cin 3319  c0 3628 This theorem is referenced by:  f1oun2prg  11864 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629
 Copyright terms: Public domain W3C validator