MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unen Unicode version

Theorem unen 6959
Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
unen  |-  ( ( ( A  ~~  B  /\  C  ~~  D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)

Proof of Theorem unen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6887 . . 3  |-  ( A 
~~  B  <->  E. x  x : A -1-1-onto-> B )
2 bren 6887 . . 3  |-  ( C 
~~  D  <->  E. y 
y : C -1-1-onto-> D )
3 eeanv 1866 . . . 4  |-  ( E. x E. y ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  <->  ( E. x  x : A -1-1-onto-> B  /\  E. y  y : C -1-1-onto-> D
) )
4 vex 2804 . . . . . . . 8  |-  x  e. 
_V
5 vex 2804 . . . . . . . 8  |-  y  e. 
_V
64, 5unex 4534 . . . . . . 7  |-  ( x  u.  y )  e. 
_V
7 f1oun 5508 . . . . . . 7  |-  ( ( ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( x  u.  y ) : ( A  u.  C ) -1-1-onto-> ( B  u.  D ) )
8 f1oen3g 6893 . . . . . . 7  |-  ( ( ( x  u.  y
)  e.  _V  /\  ( x  u.  y
) : ( A  u.  C ) -1-1-onto-> ( B  u.  D ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)
96, 7, 8sylancr 644 . . . . . 6  |-  ( ( ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)
109ex 423 . . . . 5  |-  ( ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~~  ( B  u.  D
) ) )
1110exlimivv 1625 . . . 4  |-  ( E. x E. y ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~~  ( B  u.  D
) ) )
123, 11sylbir 204 . . 3  |-  ( ( E. x  x : A -1-1-onto-> B  /\  E. y 
y : C -1-1-onto-> D )  ->  ( ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~~  ( B  u.  D
) ) )
131, 2, 12syl2anb 465 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  -> 
( A  u.  C
)  ~~  ( B  u.  D ) ) )
1413imp 418 1  |-  ( ( ( A  ~~  B  /\  C  ~~  D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   _Vcvv 2801    u. cun 3163    i^i cin 3164   (/)c0 3468   class class class wbr 4039   -1-1-onto->wf1o 5270    ~~ cen 6876
This theorem is referenced by:  difsnen  6960  undom  6966  limensuci  7053  infensuc  7055  phplem2  7057  pssnn  7097  dif1enOLD  7106  dif1en  7107  unfi  7140  infdifsn  7373  pm54.43  7649  dif1card  7654  cdaun  7814  cdaen  7815  ssfin4  7952  fin23lem26  7967  unsnen  8191  fzennn  11046  mreexexlem4d  13565
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-en 6880
  Copyright terms: Public domain W3C validator