Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  unen Structured version   Unicode version

Theorem unen 7181
 Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
unen

Proof of Theorem unen
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 7109 . . 3
2 bren 7109 . . 3
3 eeanv 1937 . . . 4
4 vex 2951 . . . . . . . 8
5 vex 2951 . . . . . . . 8
64, 5unex 4699 . . . . . . 7
7 f1oun 5686 . . . . . . 7
8 f1oen3g 7115 . . . . . . 7
96, 7, 8sylancr 645 . . . . . 6
109ex 424 . . . . 5
1110exlimivv 1645 . . . 4
123, 11sylbir 205 . . 3
131, 2, 12syl2anb 466 . 2
1413imp 419 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359  wex 1550   wceq 1652   wcel 1725  cvv 2948   cun 3310   cin 3311  c0 3620   class class class wbr 4204  wf1o 5445   cen 7098 This theorem is referenced by:  difsnen  7182  undom  7188  limensuci  7275  infensuc  7277  phplem2  7279  pssnn  7319  dif1enOLD  7332  dif1en  7333  unfi  7366  infdifsn  7603  pm54.43  7879  dif1card  7884  cdaun  8044  cdaen  8045  ssfin4  8182  fin23lem26  8197  unsnen  8420  fzennn  11299  mreexexlem4d  13864 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-un 4693 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-en 7102
 Copyright terms: Public domain W3C validator