MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unen Unicode version

Theorem unen 6943
Description: Equinumerosity of union of disjoint sets. Theorem 4 of [Suppes] p. 92. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
unen  |-  ( ( ( A  ~~  B  /\  C  ~~  D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)

Proof of Theorem unen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 6871 . . 3  |-  ( A 
~~  B  <->  E. x  x : A -1-1-onto-> B )
2 bren 6871 . . 3  |-  ( C 
~~  D  <->  E. y 
y : C -1-1-onto-> D )
3 eeanv 1854 . . . 4  |-  ( E. x E. y ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  <->  ( E. x  x : A -1-1-onto-> B  /\  E. y  y : C -1-1-onto-> D
) )
4 vex 2791 . . . . . . . 8  |-  x  e. 
_V
5 vex 2791 . . . . . . . 8  |-  y  e. 
_V
64, 5unex 4518 . . . . . . 7  |-  ( x  u.  y )  e. 
_V
7 f1oun 5492 . . . . . . 7  |-  ( ( ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( x  u.  y ) : ( A  u.  C ) -1-1-onto-> ( B  u.  D ) )
8 f1oen3g 6877 . . . . . . 7  |-  ( ( ( x  u.  y
)  e.  _V  /\  ( x  u.  y
) : ( A  u.  C ) -1-1-onto-> ( B  u.  D ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)
96, 7, 8sylancr 644 . . . . . 6  |-  ( ( ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)
109ex 423 . . . . 5  |-  ( ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~~  ( B  u.  D
) ) )
1110exlimivv 1667 . . . 4  |-  ( E. x E. y ( x : A -1-1-onto-> B  /\  y : C -1-1-onto-> D )  ->  (
( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~~  ( B  u.  D
) ) )
123, 11sylbir 204 . . 3  |-  ( ( E. x  x : A -1-1-onto-> B  /\  E. y 
y : C -1-1-onto-> D )  ->  ( ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  ->  ( A  u.  C )  ~~  ( B  u.  D
) ) )
131, 2, 12syl2anb 465 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) )  -> 
( A  u.  C
)  ~~  ( B  u.  D ) ) )
1413imp 418 1  |-  ( ( ( A  ~~  B  /\  C  ~~  D )  /\  ( ( A  i^i  C )  =  (/)  /\  ( B  i^i  D )  =  (/) ) )  ->  ( A  u.  C )  ~~  ( B  u.  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   _Vcvv 2788    u. cun 3150    i^i cin 3151   (/)c0 3455   class class class wbr 4023   -1-1-onto->wf1o 5254    ~~ cen 6860
This theorem is referenced by:  difsnen  6944  undom  6950  limensuci  7037  infensuc  7039  phplem2  7041  pssnn  7081  dif1enOLD  7090  dif1en  7091  unfi  7124  infdifsn  7357  pm54.43  7633  dif1card  7638  cdaun  7798  cdaen  7799  ssfin4  7936  fin23lem26  7951  unsnen  8175  fzennn  11030  mreexexlem4d  13549
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-en 6864
  Copyright terms: Public domain W3C validator