MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfilem1 Unicode version

Theorem unfilem1 7307
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
unfilem1.1  |-  A  e. 
om
unfilem1.2  |-  B  e. 
om
unfilem1.3  |-  F  =  ( x  e.  B  |->  ( A  +o  x
) )
Assertion
Ref Expression
unfilem1  |-  ran  F  =  ( ( A  +o  B )  \  A )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    F( x)

Proof of Theorem unfilem1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 unfilem1.2 . . . . . . . . . 10  |-  B  e. 
om
2 elnn 4795 . . . . . . . . . 10  |-  ( ( x  e.  B  /\  B  e.  om )  ->  x  e.  om )
31, 2mpan2 653 . . . . . . . . 9  |-  ( x  e.  B  ->  x  e.  om )
4 unfilem1.1 . . . . . . . . . 10  |-  A  e. 
om
5 nnaord 6798 . . . . . . . . . 10  |-  ( ( x  e.  om  /\  B  e.  om  /\  A  e.  om )  ->  (
x  e.  B  <->  ( A  +o  x )  e.  ( A  +o  B ) ) )
61, 4, 5mp3an23 1271 . . . . . . . . 9  |-  ( x  e.  om  ->  (
x  e.  B  <->  ( A  +o  x )  e.  ( A  +o  B ) ) )
73, 6syl 16 . . . . . . . 8  |-  ( x  e.  B  ->  (
x  e.  B  <->  ( A  +o  x )  e.  ( A  +o  B ) ) )
87ibi 233 . . . . . . 7  |-  ( x  e.  B  ->  ( A  +o  x )  e.  ( A  +o  B
) )
9 nnaword1 6808 . . . . . . . . 9  |-  ( ( A  e.  om  /\  x  e.  om )  ->  A  C_  ( A  +o  x ) )
10 nnord 4793 . . . . . . . . . . 11  |-  ( A  e.  om  ->  Ord  A )
114, 10ax-mp 8 . . . . . . . . . 10  |-  Ord  A
12 nnacl 6790 . . . . . . . . . . 11  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( A  +o  x
)  e.  om )
13 nnord 4793 . . . . . . . . . . 11  |-  ( ( A  +o  x )  e.  om  ->  Ord  ( A  +o  x
) )
1412, 13syl 16 . . . . . . . . . 10  |-  ( ( A  e.  om  /\  x  e.  om )  ->  Ord  ( A  +o  x ) )
15 ordtri1 4555 . . . . . . . . . 10  |-  ( ( Ord  A  /\  Ord  ( A  +o  x
) )  ->  ( A  C_  ( A  +o  x )  <->  -.  ( A  +o  x )  e.  A ) )
1611, 14, 15sylancr 645 . . . . . . . . 9  |-  ( ( A  e.  om  /\  x  e.  om )  ->  ( A  C_  ( A  +o  x )  <->  -.  ( A  +o  x )  e.  A ) )
179, 16mpbid 202 . . . . . . . 8  |-  ( ( A  e.  om  /\  x  e.  om )  ->  -.  ( A  +o  x )  e.  A
)
184, 3, 17sylancr 645 . . . . . . 7  |-  ( x  e.  B  ->  -.  ( A  +o  x
)  e.  A )
198, 18jca 519 . . . . . 6  |-  ( x  e.  B  ->  (
( A  +o  x
)  e.  ( A  +o  B )  /\  -.  ( A  +o  x
)  e.  A ) )
20 eleq1 2447 . . . . . . . 8  |-  ( y  =  ( A  +o  x )  ->  (
y  e.  ( A  +o  B )  <->  ( A  +o  x )  e.  ( A  +o  B ) ) )
21 eleq1 2447 . . . . . . . . 9  |-  ( y  =  ( A  +o  x )  ->  (
y  e.  A  <->  ( A  +o  x )  e.  A
) )
2221notbid 286 . . . . . . . 8  |-  ( y  =  ( A  +o  x )  ->  ( -.  y  e.  A  <->  -.  ( A  +o  x
)  e.  A ) )
2320, 22anbi12d 692 . . . . . . 7  |-  ( y  =  ( A  +o  x )  ->  (
( y  e.  ( A  +o  B )  /\  -.  y  e.  A )  <->  ( ( A  +o  x )  e.  ( A  +o  B
)  /\  -.  ( A  +o  x )  e.  A ) ) )
2423biimparc 474 . . . . . 6  |-  ( ( ( ( A  +o  x )  e.  ( A  +o  B )  /\  -.  ( A  +o  x )  e.  A )  /\  y  =  ( A  +o  x ) )  -> 
( y  e.  ( A  +o  B )  /\  -.  y  e.  A ) )
2519, 24sylan 458 . . . . 5  |-  ( ( x  e.  B  /\  y  =  ( A  +o  x ) )  -> 
( y  e.  ( A  +o  B )  /\  -.  y  e.  A ) )
2625rexlimiva 2768 . . . 4  |-  ( E. x  e.  B  y  =  ( A  +o  x )  ->  (
y  e.  ( A  +o  B )  /\  -.  y  e.  A
) )
274, 1nnacli 6793 . . . . . . . 8  |-  ( A  +o  B )  e. 
om
28 elnn 4795 . . . . . . . 8  |-  ( ( y  e.  ( A  +o  B )  /\  ( A  +o  B
)  e.  om )  ->  y  e.  om )
2927, 28mpan2 653 . . . . . . 7  |-  ( y  e.  ( A  +o  B )  ->  y  e.  om )
30 nnord 4793 . . . . . . . . 9  |-  ( y  e.  om  ->  Ord  y )
31 ordtri1 4555 . . . . . . . . 9  |-  ( ( Ord  A  /\  Ord  y )  ->  ( A  C_  y  <->  -.  y  e.  A ) )
3210, 30, 31syl2an 464 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  C_  y  <->  -.  y  e.  A ) )
33 nnawordex 6816 . . . . . . . 8  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  C_  y  <->  E. x  e.  om  ( A  +o  x )  =  y ) )
3432, 33bitr3d 247 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( -.  y  e.  A  <->  E. x  e.  om  ( A  +o  x
)  =  y ) )
354, 29, 34sylancr 645 . . . . . 6  |-  ( y  e.  ( A  +o  B )  ->  ( -.  y  e.  A  <->  E. x  e.  om  ( A  +o  x )  =  y ) )
36 eleq1 2447 . . . . . . . . . 10  |-  ( ( A  +o  x )  =  y  ->  (
( A  +o  x
)  e.  ( A  +o  B )  <->  y  e.  ( A  +o  B
) ) )
376, 36sylan9bb 681 . . . . . . . . 9  |-  ( ( x  e.  om  /\  ( A  +o  x
)  =  y )  ->  ( x  e.  B  <->  y  e.  ( A  +o  B ) ) )
3837biimprcd 217 . . . . . . . 8  |-  ( y  e.  ( A  +o  B )  ->  (
( x  e.  om  /\  ( A  +o  x
)  =  y )  ->  x  e.  B
) )
39 eqcom 2389 . . . . . . . . . . 11  |-  ( ( A  +o  x )  =  y  <->  y  =  ( A  +o  x
) )
4039biimpi 187 . . . . . . . . . 10  |-  ( ( A  +o  x )  =  y  ->  y  =  ( A  +o  x ) )
4140adantl 453 . . . . . . . . 9  |-  ( ( x  e.  om  /\  ( A  +o  x
)  =  y )  ->  y  =  ( A  +o  x ) )
4241a1i 11 . . . . . . . 8  |-  ( y  e.  ( A  +o  B )  ->  (
( x  e.  om  /\  ( A  +o  x
)  =  y )  ->  y  =  ( A  +o  x ) ) )
4338, 42jcad 520 . . . . . . 7  |-  ( y  e.  ( A  +o  B )  ->  (
( x  e.  om  /\  ( A  +o  x
)  =  y )  ->  ( x  e.  B  /\  y  =  ( A  +o  x
) ) ) )
4443reximdv2 2758 . . . . . 6  |-  ( y  e.  ( A  +o  B )  ->  ( E. x  e.  om  ( A  +o  x
)  =  y  ->  E. x  e.  B  y  =  ( A  +o  x ) ) )
4535, 44sylbid 207 . . . . 5  |-  ( y  e.  ( A  +o  B )  ->  ( -.  y  e.  A  ->  E. x  e.  B  y  =  ( A  +o  x ) ) )
4645imp 419 . . . 4  |-  ( ( y  e.  ( A  +o  B )  /\  -.  y  e.  A
)  ->  E. x  e.  B  y  =  ( A  +o  x
) )
4726, 46impbii 181 . . 3  |-  ( E. x  e.  B  y  =  ( A  +o  x )  <->  ( y  e.  ( A  +o  B
)  /\  -.  y  e.  A ) )
48 unfilem1.3 . . . 4  |-  F  =  ( x  e.  B  |->  ( A  +o  x
) )
49 ovex 6045 . . . 4  |-  ( A  +o  x )  e. 
_V
5048, 49elrnmpti 5061 . . 3  |-  ( y  e.  ran  F  <->  E. x  e.  B  y  =  ( A  +o  x
) )
51 eldif 3273 . . 3  |-  ( y  e.  ( ( A  +o  B )  \  A )  <->  ( y  e.  ( A  +o  B
)  /\  -.  y  e.  A ) )
5247, 50, 513bitr4i 269 . 2  |-  ( y  e.  ran  F  <->  y  e.  ( ( A  +o  B )  \  A
) )
5352eqriv 2384 1  |-  ran  F  =  ( ( A  +o  B )  \  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2650    \ cdif 3260    C_ wss 3263    e. cmpt 4207   Ord word 4521   omcom 4785   ran crn 4819  (class class class)co 6020    +o coa 6657
This theorem is referenced by:  unfilem2  7308
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-recs 6569  df-rdg 6604  df-oadd 6664
  Copyright terms: Public domain W3C validator