Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfilem2 Structured version   Unicode version

Theorem unfilem2 7372
 Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
unfilem1.1
unfilem1.2
unfilem1.3
Assertion
Ref Expression
unfilem2
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem unfilem2
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6106 . . . . . 6
2 unfilem1.3 . . . . . 6
31, 2fnmpti 5573 . . . . 5
4 unfilem1.1 . . . . . 6
5 unfilem1.2 . . . . . 6
64, 5, 2unfilem1 7371 . . . . 5
7 df-fo 5460 . . . . 5
83, 6, 7mpbir2an 887 . . . 4
9 fof 5653 . . . 4
108, 9ax-mp 8 . . 3
11 oveq2 6089 . . . . . . . 8
12 ovex 6106 . . . . . . . 8
1311, 2, 12fvmpt 5806 . . . . . . 7
14 oveq2 6089 . . . . . . . 8
15 ovex 6106 . . . . . . . 8
1614, 2, 15fvmpt 5806 . . . . . . 7
1713, 16eqeqan12d 2451 . . . . . 6
18 elnn 4855 . . . . . . . 8
195, 18mpan2 653 . . . . . . 7
20 elnn 4855 . . . . . . . 8
215, 20mpan2 653 . . . . . . 7
22 nnacan 6871 . . . . . . . 8
234, 22mp3an1 1266 . . . . . . 7
2419, 21, 23syl2an 464 . . . . . 6
2517, 24bitrd 245 . . . . 5
2625biimpd 199 . . . 4
2726rgen2a 2772 . . 3
28 dff13 6004 . . 3
2910, 27, 28mpbir2an 887 . 2
30 df-f1o 5461 . 2
3129, 8, 30mpbir2an 887 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652   wcel 1725  wral 2705   cdif 3317   cmpt 4266  com 4845   crn 4879   wfn 5449  wf 5450  wf1 5451  wfo 5452  wf1o 5453  cfv 5454  (class class class)co 6081   coa 6721 This theorem is referenced by:  unfilem3  7373 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-recs 6633  df-rdg 6668  df-oadd 6728
 Copyright terms: Public domain W3C validator