MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unictb Unicode version

Theorem unictb 8284
Description: The countable union of countable sets is countable. Theorem 6Q of [Enderton] p. 159. See iunctb 8283 for indexed union version. (Contributed by NM, 26-Mar-2006.)
Assertion
Ref Expression
unictb  |-  ( ( A  ~<_  om  /\  A. x  e.  A  x  ~<_  om )  ->  U. A  ~<_  om )
Distinct variable group:    x, A

Proof of Theorem unictb
StepHypRef Expression
1 uniiun 4034 . 2  |-  U. A  =  U_ x  e.  A  x
2 iunctb 8283 . 2  |-  ( ( A  ~<_  om  /\  A. x  e.  A  x  ~<_  om )  ->  U_ x  e.  A  x  ~<_  om )
31, 2syl5eqbr 4135 1  |-  ( ( A  ~<_  om  /\  A. x  e.  A  x  ~<_  om )  ->  U. A  ~<_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wral 2619   U.cuni 3906   U_ciun 3984   class class class wbr 4102   omcom 4735    ~<_ cdom 6946
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-inf2 7429  ax-cc 8148
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-se 4432  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-isom 5343  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-1o 6563  df-oadd 6567  df-er 6744  df-map 6859  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952  df-oi 7312  df-card 7659  df-acn 7662
  Copyright terms: Public domain W3C validator