MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniex2 Structured version   Unicode version

Theorem uniex2 4696
Description: The Axiom of Union using the standard abbreviation for union. Given any set  x, its union  y exists. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
uniex2  |-  E. y 
y  =  U. x
Distinct variable group:    x, y

Proof of Theorem uniex2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 zfun 4694 . . . 4  |-  E. y A. z ( E. y
( z  e.  y  /\  y  e.  x
)  ->  z  e.  y )
2 eluni 4010 . . . . . . 7  |-  ( z  e.  U. x  <->  E. y
( z  e.  y  /\  y  e.  x
) )
32imbi1i 316 . . . . . 6  |-  ( ( z  e.  U. x  ->  z  e.  y )  <-> 
( E. y ( z  e.  y  /\  y  e.  x )  ->  z  e.  y ) )
43albii 1575 . . . . 5  |-  ( A. z ( z  e. 
U. x  ->  z  e.  y )  <->  A. z
( E. y ( z  e.  y  /\  y  e.  x )  ->  z  e.  y ) )
54exbii 1592 . . . 4  |-  ( E. y A. z ( z  e.  U. x  ->  z  e.  y )  <->  E. y A. z ( E. y ( z  e.  y  /\  y  e.  x )  ->  z  e.  y ) )
61, 5mpbir 201 . . 3  |-  E. y A. z ( z  e. 
U. x  ->  z  e.  y )
76bm1.3ii 4325 . 2  |-  E. y A. z ( z  e.  y  <->  z  e.  U. x )
8 dfcleq 2429 . . 3  |-  ( y  =  U. x  <->  A. z
( z  e.  y  <-> 
z  e.  U. x
) )
98exbii 1592 . 2  |-  ( E. y  y  =  U. x 
<->  E. y A. z
( z  e.  y  <-> 
z  e.  U. x
) )
107, 9mpbir 201 1  |-  E. y 
y  =  U. x
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549   E.wex 1550    = wceq 1652    e. wcel 1725   U.cuni 4007
This theorem is referenced by:  uniex  4697
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-uni 4008
  Copyright terms: Public domain W3C validator