MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniin Unicode version

Theorem uniin 3847
Description: The class union of the intersection of two classes. Exercise 4.12(n) of [Mendelson] p. 235. See uninqs 25039 for a condition where equality holds. (Contributed by NM, 4-Dec-2003.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
uniin  |-  U. ( A  i^i  B )  C_  ( U. A  i^i  U. B )

Proof of Theorem uniin
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.40 1596 . . . 4  |-  ( E. y ( ( x  e.  y  /\  y  e.  A )  /\  (
x  e.  y  /\  y  e.  B )
)  ->  ( E. y ( x  e.  y  /\  y  e.  A )  /\  E. y ( x  e.  y  /\  y  e.  B ) ) )
2 elin 3358 . . . . . . 7  |-  ( y  e.  ( A  i^i  B )  <->  ( y  e.  A  /\  y  e.  B ) )
32anbi2i 675 . . . . . 6  |-  ( ( x  e.  y  /\  y  e.  ( A  i^i  B ) )  <->  ( x  e.  y  /\  (
y  e.  A  /\  y  e.  B )
) )
4 anandi 801 . . . . . 6  |-  ( ( x  e.  y  /\  ( y  e.  A  /\  y  e.  B
) )  <->  ( (
x  e.  y  /\  y  e.  A )  /\  ( x  e.  y  /\  y  e.  B
) ) )
53, 4bitri 240 . . . . 5  |-  ( ( x  e.  y  /\  y  e.  ( A  i^i  B ) )  <->  ( (
x  e.  y  /\  y  e.  A )  /\  ( x  e.  y  /\  y  e.  B
) ) )
65exbii 1569 . . . 4  |-  ( E. y ( x  e.  y  /\  y  e.  ( A  i^i  B
) )  <->  E. y
( ( x  e.  y  /\  y  e.  A )  /\  (
x  e.  y  /\  y  e.  B )
) )
7 eluni 3830 . . . . 5  |-  ( x  e.  U. A  <->  E. y
( x  e.  y  /\  y  e.  A
) )
8 eluni 3830 . . . . 5  |-  ( x  e.  U. B  <->  E. y
( x  e.  y  /\  y  e.  B
) )
97, 8anbi12i 678 . . . 4  |-  ( ( x  e.  U. A  /\  x  e.  U. B
)  <->  ( E. y
( x  e.  y  /\  y  e.  A
)  /\  E. y
( x  e.  y  /\  y  e.  B
) ) )
101, 6, 93imtr4i 257 . . 3  |-  ( E. y ( x  e.  y  /\  y  e.  ( A  i^i  B
) )  ->  (
x  e.  U. A  /\  x  e.  U. B
) )
11 eluni 3830 . . 3  |-  ( x  e.  U. ( A  i^i  B )  <->  E. y
( x  e.  y  /\  y  e.  ( A  i^i  B ) ) )
12 elin 3358 . . 3  |-  ( x  e.  ( U. A  i^i  U. B )  <->  ( x  e.  U. A  /\  x  e.  U. B ) )
1310, 11, 123imtr4i 257 . 2  |-  ( x  e.  U. ( A  i^i  B )  ->  x  e.  ( U. A  i^i  U. B ) )
1413ssriv 3184 1  |-  U. ( A  i^i  B )  C_  ( U. A  i^i  U. B )
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1528    e. wcel 1684    i^i cin 3151    C_ wss 3152   U.cuni 3827
This theorem is referenced by:  psss  14323  tgval  16693  uninqs  25039  uuniin  25087  inposet  25278  unint2t  25518  mapdunirnN  31840
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-in 3159  df-ss 3166  df-uni 3828
  Copyright terms: Public domain W3C validator