MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombl Unicode version

Theorem uniioombl 18960
Description: A disjoint union of open intervals is measurable. (This proof does not use countable choice, unlike iunmbl 18926.) Lemma 565Ca of [Fremlin5] p. 214. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.2  |-  ( ph  -> Disj  x  e.  NN ( (,) `  ( F `  x ) ) )
uniioombl.3  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
Assertion
Ref Expression
uniioombl  |-  ( ph  ->  U. ran  ( (,) 
o.  F )  e. 
dom  vol )
Distinct variable groups:    x, F    ph, x
Allowed substitution hint:    S( x)

Proof of Theorem uniioombl
Dummy variables  f 
r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 10757 . . . . 5  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
2 uniioombl.1 . . . . . 6  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
3 inss2 3403 . . . . . . 7  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
4 ressxr 8892 . . . . . . . 8  |-  RR  C_  RR*
5 xpss12 4808 . . . . . . . 8  |-  ( ( RR  C_  RR*  /\  RR  C_ 
RR* )  ->  ( RR  X.  RR )  C_  ( RR*  X.  RR* )
)
64, 4, 5mp2an 653 . . . . . . 7  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
73, 6sstri 3201 . . . . . 6  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
8 fss 5413 . . . . . 6  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* ) )  ->  F : NN --> ( RR*  X. 
RR* ) )
92, 7, 8sylancl 643 . . . . 5  |-  ( ph  ->  F : NN --> ( RR*  X. 
RR* ) )
10 fco 5414 . . . . 5  |-  ( ( (,) : ( RR*  X. 
RR* ) --> ~P RR  /\  F : NN --> ( RR*  X. 
RR* ) )  -> 
( (,)  o.  F
) : NN --> ~P RR )
111, 9, 10sylancr 644 . . . 4  |-  ( ph  ->  ( (,)  o.  F
) : NN --> ~P RR )
12 frn 5411 . . . 4  |-  ( ( (,)  o.  F ) : NN --> ~P RR  ->  ran  ( (,)  o.  F )  C_  ~P RR )
1311, 12syl 15 . . 3  |-  ( ph  ->  ran  ( (,)  o.  F )  C_  ~P RR )
14 sspwuni 4003 . . 3  |-  ( ran  ( (,)  o.  F
)  C_  ~P RR  <->  U.
ran  ( (,)  o.  F )  C_  RR )
1513, 14sylib 188 . 2  |-  ( ph  ->  U. ran  ( (,) 
o.  F )  C_  RR )
16 elpwi 3646 . . . . . . . . . . 11  |-  ( z  e.  ~P RR  ->  z 
C_  RR )
1716ad2antrl 708 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  ->  z  C_  RR )
1817adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  z  C_  RR )
19 simprr 733 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  ->  ( vol * `  z )  e.  RR )
2019adantr 451 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  ( vol * `  z )  e.  RR )
21 rphalfcl 10394 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  ( r  /  2 )  e.  RR+ )
22 rphalfcl 10394 . . . . . . . . . . 11  |-  ( ( r  /  2 )  e.  RR+  ->  ( ( r  /  2 )  /  2 )  e.  RR+ )
2321, 22syl 15 . . . . . . . . . 10  |-  ( r  e.  RR+  ->  ( ( r  /  2 )  /  2 )  e.  RR+ )
2423adantl 452 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  (
( r  /  2
)  /  2 )  e.  RR+ )
25 eqid 2296 . . . . . . . . . 10  |-  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)  =  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)
2625ovolgelb 18855 . . . . . . . . 9  |-  ( ( z  C_  RR  /\  ( vol * `  z )  e.  RR  /\  (
( r  /  2
)  /  2 )  e.  RR+ )  ->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( z  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  z )  +  ( ( r  /  2
)  /  2 ) ) ) )
2718, 20, 24, 26syl3anc 1182 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( z  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  z )  +  ( ( r  /  2
)  /  2 ) ) ) )
282ad3antrrr 710 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  (
z  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  z )  +  ( ( r  /  2 )  / 
2 ) ) ) ) )  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
29 simplll 734 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  (
z  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  z )  +  ( ( r  /  2 )  / 
2 ) ) ) ) )  ->  ph )
30 uniioombl.2 . . . . . . . . . . . 12  |-  ( ph  -> Disj  x  e.  NN ( (,) `  ( F `  x ) ) )
3129, 30syl 15 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  (
z  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  z )  +  ( ( r  /  2 )  / 
2 ) ) ) ) )  -> Disj  x  e.  NN ( (,) `  ( F `  x )
) )
32 uniioombl.3 . . . . . . . . . . 11  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
33 eqid 2296 . . . . . . . . . . 11  |-  U. ran  ( (,)  o.  F )  =  U. ran  ( (,)  o.  F )
3420adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  (
z  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  z )  +  ( ( r  /  2 )  / 
2 ) ) ) ) )  ->  ( vol * `  z )  e.  RR )
3521adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  (
r  /  2 )  e.  RR+ )
3635adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  (
z  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  z )  +  ( ( r  /  2 )  / 
2 ) ) ) ) )  ->  (
r  /  2 )  e.  RR+ )
3736, 22syl 15 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  (
z  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  z )  +  ( ( r  /  2 )  / 
2 ) ) ) ) )  ->  (
( r  /  2
)  /  2 )  e.  RR+ )
38 elmapi 6808 . . . . . . . . . . . 12  |-  ( f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  ->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
3938ad2antrl 708 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  (
z  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  z )  +  ( ( r  /  2 )  / 
2 ) ) ) ) )  ->  f : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
40 simprrl 740 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  (
z  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  z )  +  ( ( r  /  2 )  / 
2 ) ) ) ) )  ->  z  C_ 
U. ran  ( (,)  o.  f ) )
41 simprrr 741 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  (
z  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  z )  +  ( ( r  /  2 )  / 
2 ) ) ) ) )  ->  sup ( ran  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  z )  +  ( ( r  /  2
)  /  2 ) ) )
4228, 31, 32, 33, 34, 37, 39, 40, 25, 41uniioombllem6 18959 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  /\  (
f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  (
z  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  z )  +  ( ( r  /  2 )  / 
2 ) ) ) ) )  ->  (
( vol * `  ( z  i^i  U. ran  ( (,)  o.  F
) ) )  +  ( vol * `  ( z  \  U. ran  ( (,)  o.  F
) ) ) )  <_  ( ( vol
* `  z )  +  ( 4  x.  ( ( r  / 
2 )  /  2
) ) ) )
4342expr 598 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  /\  f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )  ->  (
( z  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran 
seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol * `  z )  +  ( ( r  /  2
)  /  2 ) ) )  ->  (
( vol * `  ( z  i^i  U. ran  ( (,)  o.  F
) ) )  +  ( vol * `  ( z  \  U. ran  ( (,)  o.  F
) ) ) )  <_  ( ( vol
* `  z )  +  ( 4  x.  ( ( r  / 
2 )  /  2
) ) ) ) )
4443rexlimdva 2680 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  ( E. f  e.  (
(  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( z  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran  seq  1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol
* `  z )  +  ( ( r  /  2 )  / 
2 ) ) )  ->  ( ( vol
* `  ( z  i^i  U. ran  ( (,) 
o.  F ) ) )  +  ( vol
* `  ( z  \  U. ran  ( (,) 
o.  F ) ) ) )  <_  (
( vol * `  z )  +  ( 4  x.  ( ( r  /  2 )  /  2 ) ) ) ) )
4527, 44mpd 14 . . . . . . 7  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  (
( vol * `  ( z  i^i  U. ran  ( (,)  o.  F
) ) )  +  ( vol * `  ( z  \  U. ran  ( (,)  o.  F
) ) ) )  <_  ( ( vol
* `  z )  +  ( 4  x.  ( ( r  / 
2 )  /  2
) ) ) )
46 rpcn 10378 . . . . . . . . . . . . 13  |-  ( r  e.  RR+  ->  r  e.  CC )
4746adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  r  e.  CC )
48 2cn 9832 . . . . . . . . . . . . 13  |-  2  e.  CC
4948a1i 10 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  2  e.  CC )
50 2ne0 9845 . . . . . . . . . . . . 13  |-  2  =/=  0
5150a1i 10 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  2  =/=  0 )
5247, 49, 49, 51, 51divdiv1d 9583 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  (
( r  /  2
)  /  2 )  =  ( r  / 
( 2  x.  2 ) ) )
53 2t2e4 9887 . . . . . . . . . . . 12  |-  ( 2  x.  2 )  =  4
5453oveq2i 5885 . . . . . . . . . . 11  |-  ( r  /  ( 2  x.  2 ) )  =  ( r  /  4
)
5552, 54syl6eq 2344 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  (
( r  /  2
)  /  2 )  =  ( r  / 
4 ) )
5655oveq2d 5890 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  (
4  x.  ( ( r  /  2 )  /  2 ) )  =  ( 4  x.  ( r  /  4
) ) )
57 4cn 9836 . . . . . . . . . . 11  |-  4  e.  CC
5857a1i 10 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  4  e.  CC )
59 4nn 9895 . . . . . . . . . . . 12  |-  4  e.  NN
6059nnne0i 9796 . . . . . . . . . . 11  |-  4  =/=  0
6160a1i 10 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  4  =/=  0 )
6247, 58, 61divcan2d 9554 . . . . . . . . 9  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  (
4  x.  ( r  /  4 ) )  =  r )
6356, 62eqtrd 2328 . . . . . . . 8  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  (
4  x.  ( ( r  /  2 )  /  2 ) )  =  r )
6463oveq2d 5890 . . . . . . 7  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  (
( vol * `  z )  +  ( 4  x.  ( ( r  /  2 )  /  2 ) ) )  =  ( ( vol * `  z
)  +  r ) )
6545, 64breqtrd 4063 . . . . . 6  |-  ( ( ( ph  /\  (
z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  /\  r  e.  RR+ )  ->  (
( vol * `  ( z  i^i  U. ran  ( (,)  o.  F
) ) )  +  ( vol * `  ( z  \  U. ran  ( (,)  o.  F
) ) ) )  <_  ( ( vol
* `  z )  +  r ) )
6665ralrimiva 2639 . . . . 5  |-  ( (
ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  ->  A. r  e.  RR+  ( ( vol * `  ( z  i^i  U. ran  ( (,)  o.  F
) ) )  +  ( vol * `  ( z  \  U. ran  ( (,)  o.  F
) ) ) )  <_  ( ( vol
* `  z )  +  r ) )
67 inss1 3402 . . . . . . . . 9  |-  ( z  i^i  U. ran  ( (,)  o.  F ) ) 
C_  z
6867a1i 10 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  ->  ( z  i^i  U. ran  ( (,)  o.  F ) )  C_  z )
69 ovolsscl 18861 . . . . . . . 8  |-  ( ( ( z  i^i  U. ran  ( (,)  o.  F
) )  C_  z  /\  z  C_  RR  /\  ( vol * `  z
)  e.  RR )  ->  ( vol * `  ( z  i^i  U. ran  ( (,)  o.  F
) ) )  e.  RR )
7068, 17, 19, 69syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  ->  ( vol * `  ( z  i^i  U. ran  ( (,)  o.  F
) ) )  e.  RR )
71 difss 3316 . . . . . . . . 9  |-  ( z 
\  U. ran  ( (,) 
o.  F ) ) 
C_  z
7271a1i 10 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  ->  ( z  \  U. ran  ( (,)  o.  F ) )  C_  z )
73 ovolsscl 18861 . . . . . . . 8  |-  ( ( ( z  \  U. ran  ( (,)  o.  F
) )  C_  z  /\  z  C_  RR  /\  ( vol * `  z
)  e.  RR )  ->  ( vol * `  ( z  \  U. ran  ( (,)  o.  F
) ) )  e.  RR )
7472, 17, 19, 73syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  ->  ( vol * `  ( z  \  U. ran  ( (,)  o.  F
) ) )  e.  RR )
7570, 74readdcld 8878 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  ->  ( ( vol
* `  ( z  i^i  U. ran  ( (,) 
o.  F ) ) )  +  ( vol
* `  ( z  \  U. ran  ( (,) 
o.  F ) ) ) )  e.  RR )
76 alrple 10549 . . . . . 6  |-  ( ( ( ( vol * `  ( z  i^i  U. ran  ( (,)  o.  F
) ) )  +  ( vol * `  ( z  \  U. ran  ( (,)  o.  F
) ) ) )  e.  RR  /\  ( vol * `  z )  e.  RR )  -> 
( ( ( vol
* `  ( z  i^i  U. ran  ( (,) 
o.  F ) ) )  +  ( vol
* `  ( z  \  U. ran  ( (,) 
o.  F ) ) ) )  <_  ( vol * `  z )  <->  A. r  e.  RR+  (
( vol * `  ( z  i^i  U. ran  ( (,)  o.  F
) ) )  +  ( vol * `  ( z  \  U. ran  ( (,)  o.  F
) ) ) )  <_  ( ( vol
* `  z )  +  r ) ) )
7775, 19, 76syl2anc 642 . . . . 5  |-  ( (
ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  ->  ( ( ( vol * `  (
z  i^i  U. ran  ( (,)  o.  F ) ) )  +  ( vol
* `  ( z  \  U. ran  ( (,) 
o.  F ) ) ) )  <_  ( vol * `  z )  <->  A. r  e.  RR+  (
( vol * `  ( z  i^i  U. ran  ( (,)  o.  F
) ) )  +  ( vol * `  ( z  \  U. ran  ( (,)  o.  F
) ) ) )  <_  ( ( vol
* `  z )  +  r ) ) )
7866, 77mpbird 223 . . . 4  |-  ( (
ph  /\  ( z  e.  ~P RR  /\  ( vol * `  z )  e.  RR ) )  ->  ( ( vol
* `  ( z  i^i  U. ran  ( (,) 
o.  F ) ) )  +  ( vol
* `  ( z  \  U. ran  ( (,) 
o.  F ) ) ) )  <_  ( vol * `  z ) )
7978expr 598 . . 3  |-  ( (
ph  /\  z  e.  ~P RR )  ->  (
( vol * `  z )  e.  RR  ->  ( ( vol * `  ( z  i^i  U. ran  ( (,)  o.  F
) ) )  +  ( vol * `  ( z  \  U. ran  ( (,)  o.  F
) ) ) )  <_  ( vol * `  z ) ) )
8079ralrimiva 2639 . 2  |-  ( ph  ->  A. z  e.  ~P  RR ( ( vol * `  z )  e.  RR  ->  ( ( vol * `  ( z  i^i  U. ran  ( (,)  o.  F
) ) )  +  ( vol * `  ( z  \  U. ran  ( (,)  o.  F
) ) ) )  <_  ( vol * `  z ) ) )
81 ismbl2 18902 . 2  |-  ( U. ran  ( (,)  o.  F
)  e.  dom  vol  <->  ( U. ran  ( (,)  o.  F )  C_  RR  /\ 
A. z  e.  ~P  RR ( ( vol * `  z )  e.  RR  ->  ( ( vol * `  ( z  i^i  U. ran  ( (,)  o.  F
) ) )  +  ( vol * `  ( z  \  U. ran  ( (,)  o.  F
) ) ) )  <_  ( vol * `  z ) ) ) )
8215, 80, 81sylanbrc 645 1  |-  ( ph  ->  U. ran  ( (,) 
o.  F )  e. 
dom  vol )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    \ cdif 3162    i^i cin 3164    C_ wss 3165   ~Pcpw 3638   U.cuni 3843  Disj wdisj 4009   class class class wbr 4039    X. cxp 4703   dom cdm 4705   ran crn 4706    o. ccom 4709   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^m cmap 6788   supcsup 7209   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758   RR*cxr 8882    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   4c4 9813   RR+crp 10370   (,)cioo 10672    seq cseq 11062   abscabs 11735   vol
*covol 18838   volcvol 18839
This theorem is referenced by:  uniiccmbl  18961
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-rlim 11979  df-sum 12175  df-rest 13343  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-top 16652  df-bases 16654  df-topon 16655  df-cmp 17130  df-ovol 18840  df-vol 18841
  Copyright terms: Public domain W3C validator