MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem4 Unicode version

Theorem uniioombllem4 19347
Description: Lemma for uniioombl 19350. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.2  |-  ( ph  -> Disj  x  e.  NN ( (,) `  ( F `  x ) ) )
uniioombl.3  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
uniioombl.a  |-  A  = 
U. ran  ( (,)  o.  F )
uniioombl.e  |-  ( ph  ->  ( vol * `  E )  e.  RR )
uniioombl.c  |-  ( ph  ->  C  e.  RR+ )
uniioombl.g  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.s  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
uniioombl.t  |-  T  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
uniioombl.v  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol * `  E )  +  C
) )
uniioombl.m  |-  ( ph  ->  M  e.  NN )
uniioombl.m2  |-  ( ph  ->  ( abs `  (
( T `  M
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
)
uniioombl.k  |-  K  = 
U. ( ( (,) 
o.  G ) "
( 1 ... M
) )
uniioombl.n  |-  ( ph  ->  N  e.  NN )
uniioombl.n2  |-  ( ph  ->  A. j  e.  ( 1 ... M ) ( abs `  ( sum_ i  e.  ( 1 ... N ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  M
) )
uniioombl.l  |-  L  = 
U. ( ( (,) 
o.  F ) "
( 1 ... N
) )
Assertion
Ref Expression
uniioombllem4  |-  ( ph  ->  ( vol * `  ( K  i^i  A ) )  <_  ( ( vol * `  ( K  i^i  L ) )  +  C ) )
Distinct variable groups:    i, j, x, F    i, G, j, x    j, K, x    A, j, x    C, i, j, x    i, M, j, x    i, N, j    ph, i, j, x    T, i, j, x
Allowed substitution hints:    A( i)    S( x, i, j)    E( x, i, j)    K( i)    L( x, i, j)    N( x)

Proof of Theorem uniioombllem4
StepHypRef Expression
1 inss1 3506 . . . 4  |-  ( K  i^i  A )  C_  K
21a1i 11 . . 3  |-  ( ph  ->  ( K  i^i  A
)  C_  K )
3 uniioombl.k . . . . . 6  |-  K  = 
U. ( ( (,) 
o.  G ) "
( 1 ... M
) )
4 imassrn 5158 . . . . . . 7  |-  ( ( (,)  o.  G )
" ( 1 ... M ) )  C_  ran  ( (,)  o.  G
)
54unissi 3982 . . . . . 6  |-  U. (
( (,)  o.  G
) " ( 1 ... M ) ) 
C_  U. ran  ( (,) 
o.  G )
63, 5eqsstri 3323 . . . . 5  |-  K  C_  U.
ran  ( (,)  o.  G )
76a1i 11 . . . 4  |-  ( ph  ->  K  C_  U. ran  ( (,)  o.  G ) )
8 uniioombl.g . . . . . . 7  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
98uniiccdif 19339 . . . . . 6  |-  ( ph  ->  ( U. ran  ( (,)  o.  G )  C_  U.
ran  ( [,]  o.  G )  /\  ( vol * `  ( U. ran  ( [,]  o.  G
)  \  U. ran  ( (,)  o.  G ) ) )  =  0 ) )
109simpld 446 . . . . 5  |-  ( ph  ->  U. ran  ( (,) 
o.  G )  C_  U.
ran  ( [,]  o.  G ) )
11 ovolficcss 19235 . . . . . 6  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U. ran  ( [,]  o.  G ) 
C_  RR )
128, 11syl 16 . . . . 5  |-  ( ph  ->  U. ran  ( [,] 
o.  G )  C_  RR )
1310, 12sstrd 3303 . . . 4  |-  ( ph  ->  U. ran  ( (,) 
o.  G )  C_  RR )
147, 13sstrd 3303 . . 3  |-  ( ph  ->  K  C_  RR )
15 uniioombl.1 . . . . . 6  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
16 uniioombl.2 . . . . . 6  |-  ( ph  -> Disj  x  e.  NN ( (,) `  ( F `  x ) ) )
17 uniioombl.3 . . . . . 6  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
18 uniioombl.a . . . . . 6  |-  A  = 
U. ran  ( (,)  o.  F )
19 uniioombl.e . . . . . 6  |-  ( ph  ->  ( vol * `  E )  e.  RR )
20 uniioombl.c . . . . . 6  |-  ( ph  ->  C  e.  RR+ )
21 uniioombl.s . . . . . 6  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
22 uniioombl.t . . . . . 6  |-  T  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
23 uniioombl.v . . . . . 6  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol * `  E )  +  C
) )
2415, 16, 17, 18, 19, 20, 8, 21, 22, 23uniioombllem1 19342 . . . . 5  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR )
25 ssid 3312 . . . . . 6  |-  U. ran  ( (,)  o.  G ) 
C_  U. ran  ( (,) 
o.  G )
2622ovollb 19244 . . . . . 6  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  U. ran  ( (,)  o.  G
)  C_  U. ran  ( (,)  o.  G ) )  ->  ( vol * `  U. ran  ( (,) 
o.  G ) )  <_  sup ( ran  T ,  RR* ,  <  )
)
278, 25, 26sylancl 644 . . . . 5  |-  ( ph  ->  ( vol * `  U. ran  ( (,)  o.  G ) )  <_  sup ( ran  T ,  RR* ,  <  ) )
28 ovollecl 19248 . . . . 5  |-  ( ( U. ran  ( (,) 
o.  G )  C_  RR  /\  sup ( ran 
T ,  RR* ,  <  )  e.  RR  /\  ( vol * `  U. ran  ( (,)  o.  G ) )  <_  sup ( ran  T ,  RR* ,  <  ) )  ->  ( vol * `
 U. ran  ( (,)  o.  G ) )  e.  RR )
2913, 24, 27, 28syl3anc 1184 . . . 4  |-  ( ph  ->  ( vol * `  U. ran  ( (,)  o.  G ) )  e.  RR )
30 ovolsscl 19251 . . . 4  |-  ( ( K  C_  U. ran  ( (,)  o.  G )  /\  U.
ran  ( (,)  o.  G )  C_  RR  /\  ( vol * `  U. ran  ( (,)  o.  G ) )  e.  RR )  ->  ( vol * `  K )  e.  RR )
317, 13, 29, 30syl3anc 1184 . . 3  |-  ( ph  ->  ( vol * `  K )  e.  RR )
32 ovolsscl 19251 . . 3  |-  ( ( ( K  i^i  A
)  C_  K  /\  K  C_  RR  /\  ( vol * `  K )  e.  RR )  -> 
( vol * `  ( K  i^i  A ) )  e.  RR )
332, 14, 31, 32syl3anc 1184 . 2  |-  ( ph  ->  ( vol * `  ( K  i^i  A ) )  e.  RR )
34 inss1 3506 . . . . 5  |-  ( K  i^i  L )  C_  K
3534a1i 11 . . . 4  |-  ( ph  ->  ( K  i^i  L
)  C_  K )
36 ovolsscl 19251 . . . 4  |-  ( ( ( K  i^i  L
)  C_  K  /\  K  C_  RR  /\  ( vol * `  K )  e.  RR )  -> 
( vol * `  ( K  i^i  L ) )  e.  RR )
3735, 14, 31, 36syl3anc 1184 . . 3  |-  ( ph  ->  ( vol * `  ( K  i^i  L ) )  e.  RR )
38 ssun2 3456 . . . . . 6  |-  U_ j  e.  ( 1 ... M
) U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  ( ( K  i^i  L )  u.  U_ j  e.  ( 1 ... M
) U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )
39 nnuz 10455 . . . . . . . . . . . . . 14  |-  NN  =  ( ZZ>= `  1 )
40 uniioombl.n . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  N  e.  NN )
4140peano2nnd 9951 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( N  +  1 )  e.  NN )
4241, 39syl6eleq 2479 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= ` 
1 ) )
43 uzsplit 11050 . . . . . . . . . . . . . . 15  |-  ( ( N  +  1 )  e.  ( ZZ>= `  1
)  ->  ( ZZ>= ` 
1 )  =  ( ( 1 ... (
( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1
) ) ) )
4442, 43syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ZZ>= `  1 )  =  ( ( 1 ... ( ( N  +  1 )  - 
1 ) )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
4539, 44syl5eq 2433 . . . . . . . . . . . . 13  |-  ( ph  ->  NN  =  ( ( 1 ... ( ( N  +  1 )  -  1 ) )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
4640nncnd 9950 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  N  e.  CC )
47 ax-1cn 8983 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
48 pncan 9245 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
4946, 47, 48sylancl 644 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( N  + 
1 )  -  1 )  =  N )
5049oveq2d 6038 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1 ... (
( N  +  1 )  -  1 ) )  =  ( 1 ... N ) )
5150uneq1d 3445 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 1 ... ( ( N  + 
1 )  -  1 ) )  u.  ( ZZ>=
`  ( N  + 
1 ) ) )  =  ( ( 1 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
5245, 51eqtrd 2421 . . . . . . . . . . . 12  |-  ( ph  ->  NN  =  ( ( 1 ... N )  u.  ( ZZ>= `  ( N  +  1 ) ) ) )
5352iuneq1d 4060 . . . . . . . . . . 11  |-  ( ph  ->  U_ i  e.  NN  ( (,) `  ( F `
 i ) )  =  U_ i  e.  ( ( 1 ... N )  u.  ( ZZ>=
`  ( N  + 
1 ) ) ) ( (,) `  ( F `  i )
) )
54 iunxun 4115 . . . . . . . . . . 11  |-  U_ i  e.  ( ( 1 ... N )  u.  ( ZZ>=
`  ( N  + 
1 ) ) ) ( (,) `  ( F `  i )
)  =  ( U_ i  e.  ( 1 ... N ) ( (,) `  ( F `
 i ) )  u.  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
) )
5553, 54syl6eq 2437 . . . . . . . . . 10  |-  ( ph  ->  U_ i  e.  NN  ( (,) `  ( F `
 i ) )  =  ( U_ i  e.  ( 1 ... N
) ( (,) `  ( F `  i )
)  u.  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
) ) )
56 ioof 10936 . . . . . . . . . . . . . 14  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
57 inss2 3507 . . . . . . . . . . . . . . . 16  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
58 ressxr 9064 . . . . . . . . . . . . . . . . 17  |-  RR  C_  RR*
59 xpss12 4923 . . . . . . . . . . . . . . . . 17  |-  ( ( RR  C_  RR*  /\  RR  C_ 
RR* )  ->  ( RR  X.  RR )  C_  ( RR*  X.  RR* )
)
6058, 58, 59mp2an 654 . . . . . . . . . . . . . . . 16  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
6157, 60sstri 3302 . . . . . . . . . . . . . . 15  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
62 fss 5541 . . . . . . . . . . . . . . 15  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* ) )  ->  F : NN --> ( RR*  X. 
RR* ) )
6315, 61, 62sylancl 644 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : NN --> ( RR*  X. 
RR* ) )
64 fco 5542 . . . . . . . . . . . . . 14  |-  ( ( (,) : ( RR*  X. 
RR* ) --> ~P RR  /\  F : NN --> ( RR*  X. 
RR* ) )  -> 
( (,)  o.  F
) : NN --> ~P RR )
6556, 63, 64sylancr 645 . . . . . . . . . . . . 13  |-  ( ph  ->  ( (,)  o.  F
) : NN --> ~P RR )
66 ffn 5533 . . . . . . . . . . . . 13  |-  ( ( (,)  o.  F ) : NN --> ~P RR  ->  ( (,)  o.  F
)  Fn  NN )
67 fniunfv 5935 . . . . . . . . . . . . 13  |-  ( ( (,)  o.  F )  Fn  NN  ->  U_ i  e.  NN  ( ( (,) 
o.  F ) `  i )  =  U. ran  ( (,)  o.  F
) )
6865, 66, 673syl 19 . . . . . . . . . . . 12  |-  ( ph  ->  U_ i  e.  NN  ( ( (,)  o.  F ) `  i
)  =  U. ran  ( (,)  o.  F ) )
69 fvco3 5741 . . . . . . . . . . . . . 14  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  i  e.  NN )  ->  (
( (,)  o.  F
) `  i )  =  ( (,) `  ( F `  i )
) )
7015, 69sylan 458 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  NN )  ->  ( ( (,)  o.  F ) `
 i )  =  ( (,) `  ( F `  i )
) )
7170iuneq2dv 4058 . . . . . . . . . . . 12  |-  ( ph  ->  U_ i  e.  NN  ( ( (,)  o.  F ) `  i
)  =  U_ i  e.  NN  ( (,) `  ( F `  i )
) )
7268, 71eqtr3d 2423 . . . . . . . . . . 11  |-  ( ph  ->  U. ran  ( (,) 
o.  F )  = 
U_ i  e.  NN  ( (,) `  ( F `
 i ) ) )
7318, 72syl5eq 2433 . . . . . . . . . 10  |-  ( ph  ->  A  =  U_ i  e.  NN  ( (,) `  ( F `  i )
) )
74 uniioombl.l . . . . . . . . . . . 12  |-  L  = 
U. ( ( (,) 
o.  F ) "
( 1 ... N
) )
75 ffun 5535 . . . . . . . . . . . . . 14  |-  ( ( (,)  o.  F ) : NN --> ~P RR  ->  Fun  ( (,)  o.  F ) )
76 funiunfv 5936 . . . . . . . . . . . . . 14  |-  ( Fun  ( (,)  o.  F
)  ->  U_ i  e.  ( 1 ... N
) ( ( (,) 
o.  F ) `  i )  =  U. ( ( (,)  o.  F ) " (
1 ... N ) ) )
7765, 75, 763syl 19 . . . . . . . . . . . . 13  |-  ( ph  ->  U_ i  e.  ( 1 ... N ) ( ( (,)  o.  F ) `  i
)  =  U. (
( (,)  o.  F
) " ( 1 ... N ) ) )
78 elfznn 11014 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( 1 ... N )  ->  i  e.  NN )
7915, 78, 69syl2an 464 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  i  e.  ( 1 ... N
) )  ->  (
( (,)  o.  F
) `  i )  =  ( (,) `  ( F `  i )
) )
8079iuneq2dv 4058 . . . . . . . . . . . . 13  |-  ( ph  ->  U_ i  e.  ( 1 ... N ) ( ( (,)  o.  F ) `  i
)  =  U_ i  e.  ( 1 ... N
) ( (,) `  ( F `  i )
) )
8177, 80eqtr3d 2423 . . . . . . . . . . . 12  |-  ( ph  ->  U. ( ( (,) 
o.  F ) "
( 1 ... N
) )  =  U_ i  e.  ( 1 ... N ) ( (,) `  ( F `
 i ) ) )
8274, 81syl5eq 2433 . . . . . . . . . . 11  |-  ( ph  ->  L  =  U_ i  e.  ( 1 ... N
) ( (,) `  ( F `  i )
) )
8382uneq1d 3445 . . . . . . . . . 10  |-  ( ph  ->  ( L  u.  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( (,) `  ( F `  i
) ) )  =  ( U_ i  e.  ( 1 ... N
) ( (,) `  ( F `  i )
)  u.  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
) ) )
8455, 73, 833eqtr4d 2431 . . . . . . . . 9  |-  ( ph  ->  A  =  ( L  u.  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
) ) )
8584ineq2d 3487 . . . . . . . 8  |-  ( ph  ->  ( K  i^i  A
)  =  ( K  i^i  ( L  u.  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( (,) `  ( F `  i
) ) ) ) )
86 indi 3532 . . . . . . . 8  |-  ( K  i^i  ( L  u.  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( (,) `  ( F `  i
) ) ) )  =  ( ( K  i^i  L )  u.  ( K  i^i  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( (,) `  ( F `  i
) ) ) )
8785, 86syl6eq 2437 . . . . . . 7  |-  ( ph  ->  ( K  i^i  A
)  =  ( ( K  i^i  L )  u.  ( K  i^i  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( (,) `  ( F `  i
) ) ) ) )
88 fss 5541 . . . . . . . . . . . . . . 15  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* ) )  ->  G : NN --> ( RR*  X. 
RR* ) )
898, 61, 88sylancl 644 . . . . . . . . . . . . . 14  |-  ( ph  ->  G : NN --> ( RR*  X. 
RR* ) )
90 fco 5542 . . . . . . . . . . . . . 14  |-  ( ( (,) : ( RR*  X. 
RR* ) --> ~P RR  /\  G : NN --> ( RR*  X. 
RR* ) )  -> 
( (,)  o.  G
) : NN --> ~P RR )
9156, 89, 90sylancr 645 . . . . . . . . . . . . 13  |-  ( ph  ->  ( (,)  o.  G
) : NN --> ~P RR )
92 ffun 5535 . . . . . . . . . . . . 13  |-  ( ( (,)  o.  G ) : NN --> ~P RR  ->  Fun  ( (,)  o.  G ) )
93 funiunfv 5936 . . . . . . . . . . . . 13  |-  ( Fun  ( (,)  o.  G
)  ->  U_ j  e.  ( 1 ... M
) ( ( (,) 
o.  G ) `  j )  =  U. ( ( (,)  o.  G ) " (
1 ... M ) ) )
9491, 92, 933syl 19 . . . . . . . . . . . 12  |-  ( ph  ->  U_ j  e.  ( 1 ... M ) ( ( (,)  o.  G ) `  j
)  =  U. (
( (,)  o.  G
) " ( 1 ... M ) ) )
95 elfznn 11014 . . . . . . . . . . . . . 14  |-  ( j  e.  ( 1 ... M )  ->  j  e.  NN )
96 fvco3 5741 . . . . . . . . . . . . . 14  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  j  e.  NN )  ->  (
( (,)  o.  G
) `  j )  =  ( (,) `  ( G `  j )
) )
978, 95, 96syl2an 464 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( (,)  o.  G
) `  j )  =  ( (,) `  ( G `  j )
) )
9897iuneq2dv 4058 . . . . . . . . . . . 12  |-  ( ph  ->  U_ j  e.  ( 1 ... M ) ( ( (,)  o.  G ) `  j
)  =  U_ j  e.  ( 1 ... M
) ( (,) `  ( G `  j )
) )
9994, 98eqtr3d 2423 . . . . . . . . . . 11  |-  ( ph  ->  U. ( ( (,) 
o.  G ) "
( 1 ... M
) )  =  U_ j  e.  ( 1 ... M ) ( (,) `  ( G `
 j ) ) )
1003, 99syl5eq 2433 . . . . . . . . . 10  |-  ( ph  ->  K  =  U_ j  e.  ( 1 ... M
) ( (,) `  ( G `  j )
) )
101100ineq2d 3487 . . . . . . . . 9  |-  ( ph  ->  ( U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
)  i^i  K )  =  ( U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
)  i^i  U_ j  e.  ( 1 ... M
) ( (,) `  ( G `  j )
) ) )
102 incom 3478 . . . . . . . . 9  |-  ( K  i^i  U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( (,) `  ( F `
 i ) ) )  =  ( U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( (,) `  ( F `  i
) )  i^i  K
)
103 iunin2 4098 . . . . . . . . . . . . 13  |-  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( (,) `  ( G `  j )
)  i^i  ( (,) `  ( F `  i
) ) )  =  ( ( (,) `  ( G `  j )
)  i^i  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
) )
104 incom 3478 . . . . . . . . . . . . . . 15  |-  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) )  =  ( ( (,) `  ( G `  j )
)  i^i  ( (,) `  ( F `  i
) ) )
105104a1i 11 . . . . . . . . . . . . . 14  |-  ( i  e.  ( ZZ>= `  ( N  +  1 ) )  ->  ( ( (,) `  ( F `  i ) )  i^i  ( (,) `  ( G `  j )
) )  =  ( ( (,) `  ( G `  j )
)  i^i  ( (,) `  ( F `  i
) ) ) )
106105iuneq2i 4055 . . . . . . . . . . . . 13  |-  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  = 
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( G `  j )
)  i^i  ( (,) `  ( F `  i
) ) )
107 incom 3478 . . . . . . . . . . . . 13  |-  ( U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) )  =  ( ( (,) `  ( G `  j
) )  i^i  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( (,) `  ( F `  i
) ) )
108103, 106, 1073eqtr4ri 2420 . . . . . . . . . . . 12  |-  ( U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) )  =  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )
109108a1i 11 . . . . . . . . . . 11  |-  ( j  e.  ( 1 ... M )  ->  ( U_ i  e.  ( ZZ>=
`  ( N  + 
1 ) ) ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) )  =  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )
110109iuneq2i 4055 . . . . . . . . . 10  |-  U_ j  e.  ( 1 ... M
) ( U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  = 
U_ j  e.  ( 1 ... M )
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )
111 iunin2 4098 . . . . . . . . . 10  |-  U_ j  e.  ( 1 ... M
) ( U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  =  ( U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
)  i^i  U_ j  e.  ( 1 ... M
) ( (,) `  ( G `  j )
) )
112110, 111eqtr3i 2411 . . . . . . . . 9  |-  U_ j  e.  ( 1 ... M
) U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  =  ( U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
)  i^i  U_ j  e.  ( 1 ... M
) ( (,) `  ( G `  j )
) )
113101, 102, 1123eqtr4g 2446 . . . . . . . 8  |-  ( ph  ->  ( K  i^i  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( (,) `  ( F `  i
) ) )  = 
U_ j  e.  ( 1 ... M )
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )
114113uneq2d 3446 . . . . . . 7  |-  ( ph  ->  ( ( K  i^i  L )  u.  ( K  i^i  U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( (,) `  ( F `
 i ) ) ) )  =  ( ( K  i^i  L
)  u.  U_ j  e.  ( 1 ... M
) U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
11587, 114eqtrd 2421 . . . . . 6  |-  ( ph  ->  ( K  i^i  A
)  =  ( ( K  i^i  L )  u.  U_ j  e.  ( 1 ... M
) U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
11638, 115syl5sseqr 3342 . . . . 5  |-  ( ph  ->  U_ j  e.  ( 1 ... M )
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  ( K  i^i  A ) )
117116, 1syl6ss 3305 . . . 4  |-  ( ph  ->  U_ j  e.  ( 1 ... M )
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  K )
118 ovolsscl 19251 . . . 4  |-  ( (
U_ j  e.  ( 1 ... M )
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  K  /\  K  C_  RR  /\  ( vol * `  K )  e.  RR )  ->  ( vol * `  U_ j  e.  ( 1 ... M )
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  e.  RR )
119117, 14, 31, 118syl3anc 1184 . . 3  |-  ( ph  ->  ( vol * `  U_ j  e.  ( 1 ... M ) U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  e.  RR )
12037, 119readdcld 9050 . 2  |-  ( ph  ->  ( ( vol * `  ( K  i^i  L
) )  +  ( vol * `  U_ j  e.  ( 1 ... M
) U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )  e.  RR )
12120rpred 10582 . . 3  |-  ( ph  ->  C  e.  RR )
12237, 121readdcld 9050 . 2  |-  ( ph  ->  ( ( vol * `  ( K  i^i  L
) )  +  C
)  e.  RR )
123115fveq2d 5674 . . 3  |-  ( ph  ->  ( vol * `  ( K  i^i  A ) )  =  ( vol
* `  ( ( K  i^i  L )  u. 
U_ j  e.  ( 1 ... M )
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) )
12435, 14sstrd 3303 . . . 4  |-  ( ph  ->  ( K  i^i  L
)  C_  RR )
125117, 14sstrd 3303 . . . 4  |-  ( ph  ->  U_ j  e.  ( 1 ... M )
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  RR )
126 ovolun 19264 . . . 4  |-  ( ( ( ( K  i^i  L )  C_  RR  /\  ( vol * `  ( K  i^i  L ) )  e.  RR )  /\  ( U_ j  e.  ( 1 ... M )
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  RR  /\  ( vol * `  U_ j  e.  ( 1 ... M )
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  e.  RR ) )  ->  ( vol * `  ( ( K  i^i  L )  u.  U_ j  e.  ( 1 ... M
) U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )  <_  ( ( vol * `  ( K  i^i  L ) )  +  ( vol * `  U_ j  e.  ( 1 ... M )
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) )
127124, 37, 125, 119, 126syl22anc 1185 . . 3  |-  ( ph  ->  ( vol * `  ( ( K  i^i  L )  u.  U_ j  e.  ( 1 ... M
) U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )  <_  ( ( vol * `  ( K  i^i  L ) )  +  ( vol * `  U_ j  e.  ( 1 ... M )
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) )
128123, 127eqbrtrd 4175 . 2  |-  ( ph  ->  ( vol * `  ( K  i^i  A ) )  <_  ( ( vol * `  ( K  i^i  L ) )  +  ( vol * `  U_ j  e.  ( 1 ... M )
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) )
129 fzfid 11241 . . . . 5  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
130 iunss 4075 . . . . . . . 8  |-  ( U_ j  e.  ( 1 ... M ) U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) )  C_  K  <->  A. j  e.  ( 1 ... M ) U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) )  C_  K
)
131117, 130sylib 189 . . . . . . 7  |-  ( ph  ->  A. j  e.  ( 1 ... M )
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  K )
132131r19.21bi 2749 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  K )
13314adantr 452 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  K  C_  RR )
13431adantr 452 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  K )  e.  RR )
135 ovolsscl 19251 . . . . . 6  |-  ( (
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  K  /\  K  C_  RR  /\  ( vol * `  K )  e.  RR )  ->  ( vol * `  U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  e.  RR )
136132, 133, 134, 135syl3anc 1184 . . . . 5  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  e.  RR )
137129, 136fsumrecl 12457 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( 1 ... M ) ( vol * `  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  e.  RR )
138132, 133sstrd 3303 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  RR )
139138, 136jca 519 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( U_ i  e.  ( ZZ>=
`  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  RR  /\  ( vol * `  U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  e.  RR ) )
140139ralrimiva 2734 . . . . 5  |-  ( ph  ->  A. j  e.  ( 1 ... M ) ( U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  RR  /\  ( vol * `  U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  e.  RR ) )
141 ovolfiniun 19266 . . . . 5  |-  ( ( ( 1 ... M
)  e.  Fin  /\  A. j  e.  ( 1 ... M ) (
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  RR  /\  ( vol * `  U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  e.  RR ) )  ->  ( vol * `  U_ j  e.  ( 1 ... M )
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  <_  sum_ j  e.  ( 1 ... M ) ( vol * `  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) ) )
142129, 140, 141syl2anc 643 . . . 4  |-  ( ph  ->  ( vol * `  U_ j  e.  ( 1 ... M ) U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  <_  sum_ j  e.  ( 1 ... M ) ( vol * `  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
143 uniioombl.m . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
144121, 143nndivred 9982 . . . . . . 7  |-  ( ph  ->  ( C  /  M
)  e.  RR )
145144adantr 452 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( C  /  M )  e.  RR )
14682ineq2d 3487 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( (,) `  ( G `  j )
)  i^i  L )  =  ( ( (,) `  ( G `  j
) )  i^i  U_ i  e.  ( 1 ... N ) ( (,) `  ( F `
 i ) ) ) )
147146adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( (,) `  ( G `  j )
)  i^i  L )  =  ( ( (,) `  ( G `  j
) )  i^i  U_ i  e.  ( 1 ... N ) ( (,) `  ( F `
 i ) ) ) )
148104a1i 11 . . . . . . . . . . . . . 14  |-  ( i  e.  ( 1 ... N )  ->  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  =  ( ( (,) `  ( G `  j )
)  i^i  ( (,) `  ( F `  i
) ) ) )
149148iuneq2i 4055 . . . . . . . . . . . . 13  |-  U_ i  e.  ( 1 ... N
) ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) )  =  U_ i  e.  ( 1 ... N
) ( ( (,) `  ( G `  j
) )  i^i  ( (,) `  ( F `  i ) ) )
150 iunin2 4098 . . . . . . . . . . . . 13  |-  U_ i  e.  ( 1 ... N
) ( ( (,) `  ( G `  j
) )  i^i  ( (,) `  ( F `  i ) ) )  =  ( ( (,) `  ( G `  j
) )  i^i  U_ i  e.  ( 1 ... N ) ( (,) `  ( F `
 i ) ) )
151149, 150eqtri 2409 . . . . . . . . . . . 12  |-  U_ i  e.  ( 1 ... N
) ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) )  =  ( ( (,) `  ( G `  j
) )  i^i  U_ i  e.  ( 1 ... N ) ( (,) `  ( F `
 i ) ) )
152147, 151syl6eqr 2439 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( (,) `  ( G `  j )
)  i^i  L )  =  U_ i  e.  ( 1 ... N ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )
153 fzfid 11241 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
1 ... N )  e. 
Fin )
154 ffvelrn 5809 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  i  e.  NN )  ->  ( F `  i )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
15515, 78, 154syl2an 464 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  ( 1 ... N
) )  ->  ( F `  i )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
15657, 155sseldi 3291 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  ( 1 ... N
) )  ->  ( F `  i )  e.  ( RR  X.  RR ) )
157 1st2nd2 6327 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F `  i )  e.  ( RR  X.  RR )  ->  ( F `
 i )  = 
<. ( 1st `  ( F `  i )
) ,  ( 2nd `  ( F `  i
) ) >. )
158156, 157syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  i  e.  ( 1 ... N
) )  ->  ( F `  i )  =  <. ( 1st `  ( F `  i )
) ,  ( 2nd `  ( F `  i
) ) >. )
159158fveq2d 5674 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  i  e.  ( 1 ... N
) )  ->  ( (,) `  ( F `  i ) )  =  ( (,) `  <. ( 1st `  ( F `
 i ) ) ,  ( 2nd `  ( F `  i )
) >. ) )
160 df-ov 6025 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  ( F `
 i ) ) (,) ( 2nd `  ( F `  i )
) )  =  ( (,) `  <. ( 1st `  ( F `  i ) ) ,  ( 2nd `  ( F `  i )
) >. )
161159, 160syl6eqr 2439 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  i  e.  ( 1 ... N
) )  ->  ( (,) `  ( F `  i ) )  =  ( ( 1st `  ( F `  i )
) (,) ( 2nd `  ( F `  i
) ) ) )
162 ioombl 19328 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  ( F `
 i ) ) (,) ( 2nd `  ( F `  i )
) )  e.  dom  vol
163161, 162syl6eqel 2477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  i  e.  ( 1 ... N
) )  ->  ( (,) `  ( F `  i ) )  e. 
dom  vol )
164163adantlr 696 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  i  e.  ( 1 ... N
) )  ->  ( (,) `  ( F `  i ) )  e. 
dom  vol )
165 ffvelrn 5809 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  j  e.  NN )  ->  ( G `  j )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
1668, 95, 165syl2an 464 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( G `  j )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
16757, 166sseldi 3291 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( G `  j )  e.  ( RR  X.  RR ) )
168 1st2nd2 6327 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G `  j )  e.  ( RR  X.  RR )  ->  ( G `
 j )  = 
<. ( 1st `  ( G `  j )
) ,  ( 2nd `  ( G `  j
) ) >. )
169167, 168syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( G `  j )  =  <. ( 1st `  ( G `  j )
) ,  ( 2nd `  ( G `  j
) ) >. )
170169fveq2d 5674 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( (,) `  ( G `  j ) )  =  ( (,) `  <. ( 1st `  ( G `
 j ) ) ,  ( 2nd `  ( G `  j )
) >. ) )
171 df-ov 6025 . . . . . . . . . . . . . . . . 17  |-  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) )  =  ( (,) `  <. ( 1st `  ( G `  j ) ) ,  ( 2nd `  ( G `  j )
) >. )
172170, 171syl6eqr 2439 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( (,) `  ( G `  j ) )  =  ( ( 1st `  ( G `  j )
) (,) ( 2nd `  ( G `  j
) ) ) )
173 ioombl 19328 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) )  e.  dom  vol
174172, 173syl6eqel 2477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( (,) `  ( G `  j ) )  e. 
dom  vol )
175174adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  i  e.  ( 1 ... N
) )  ->  ( (,) `  ( G `  j ) )  e. 
dom  vol )
176 inmbl 19305 . . . . . . . . . . . . . 14  |-  ( ( ( (,) `  ( F `  i )
)  e.  dom  vol  /\  ( (,) `  ( G `  j )
)  e.  dom  vol )  ->  ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) )  e.  dom  vol )
177164, 175, 176syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  i  e.  ( 1 ... N
) )  ->  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  e. 
dom  vol )
178177ralrimiva 2734 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  A. i  e.  ( 1 ... N
) ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) )  e.  dom  vol )
179 finiunmbl 19307 . . . . . . . . . . . 12  |-  ( ( ( 1 ... N
)  e.  Fin  /\  A. i  e.  ( 1 ... N ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  e. 
dom  vol )  ->  U_ i  e.  ( 1 ... N
) ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) )  e.  dom  vol )
180153, 178, 179syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  U_ i  e.  ( 1 ... N
) ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) )  e.  dom  vol )
181152, 180eqeltrd 2463 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( (,) `  ( G `  j )
)  i^i  L )  e.  dom  vol )
182 inss2 3507 . . . . . . . . . . 11  |-  ( ( (,) `  ( G `
 j ) )  i^i  A )  C_  A
18315uniiccdif 19339 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( U. ran  ( (,)  o.  F )  C_  U.
ran  ( [,]  o.  F )  /\  ( vol * `  ( U. ran  ( [,]  o.  F
)  \  U. ran  ( (,)  o.  F ) ) )  =  0 ) )
184183simpld 446 . . . . . . . . . . . . . 14  |-  ( ph  ->  U. ran  ( (,) 
o.  F )  C_  U.
ran  ( [,]  o.  F ) )
185 ovolficcss 19235 . . . . . . . . . . . . . . 15  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  U. ran  ( [,]  o.  F ) 
C_  RR )
18615, 185syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  U. ran  ( [,] 
o.  F )  C_  RR )
187184, 186sstrd 3303 . . . . . . . . . . . . 13  |-  ( ph  ->  U. ran  ( (,) 
o.  F )  C_  RR )
18818, 187syl5eqss 3337 . . . . . . . . . . . 12  |-  ( ph  ->  A  C_  RR )
189188adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  A  C_  RR )
190182, 189syl5ss 3304 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( (,) `  ( G `  j )
)  i^i  A )  C_  RR )
191 inss1 3506 . . . . . . . . . . . 12  |-  ( ( (,) `  ( G `
 j ) )  i^i  A )  C_  ( (,) `  ( G `
 j ) )
192191a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( (,) `  ( G `  j )
)  i^i  A )  C_  ( (,) `  ( G `  j )
) )
193 ioossre 10906 . . . . . . . . . . . 12  |-  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) )  C_  RR
194172, 193syl6eqss 3343 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( (,) `  ( G `  j ) )  C_  RR )
195172fveq2d 5674 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  ( (,) `  ( G `  j
) ) )  =  ( vol * `  ( ( 1st `  ( G `  j )
) (,) ( 2nd `  ( G `  j
) ) ) ) )
196 ovolfcl 19232 . . . . . . . . . . . . . . 15  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  j  e.  NN )  ->  (
( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) ) )
1978, 95, 196syl2an 464 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) ) )
198 ovolioo 19331 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) )  ->  ( vol * `  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
199197, 198syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
200195, 199eqtrd 2421 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  ( (,) `  ( G `  j
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
201197simp2d 970 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( 2nd `  ( G `  j ) )  e.  RR )
202197simp1d 969 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( 1st `  ( G `  j ) )  e.  RR )
203201, 202resubcld 9399 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) )  e.  RR )
204200, 203eqeltrd 2463 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  ( (,) `  ( G `  j
) ) )  e.  RR )
205 ovolsscl 19251 . . . . . . . . . . 11  |-  ( ( ( ( (,) `  ( G `  j )
)  i^i  A )  C_  ( (,) `  ( G `  j )
)  /\  ( (,) `  ( G `  j
) )  C_  RR  /\  ( vol * `  ( (,) `  ( G `
 j ) ) )  e.  RR )  ->  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
)  e.  RR )
206192, 194, 204, 205syl3anc 1184 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  ( ( (,) `  ( G `
 j ) )  i^i  A ) )  e.  RR )
207 mblsplit 19297 . . . . . . . . . 10  |-  ( ( ( ( (,) `  ( G `  j )
)  i^i  L )  e.  dom  vol  /\  (
( (,) `  ( G `  j )
)  i^i  A )  C_  RR  /\  ( vol
* `  ( ( (,) `  ( G `  j ) )  i^i 
A ) )  e.  RR )  ->  ( vol * `  ( ( (,) `  ( G `
 j ) )  i^i  A ) )  =  ( ( vol
* `  ( (
( (,) `  ( G `  j )
)  i^i  A )  i^i  ( ( (,) `  ( G `  j )
)  i^i  L )
) )  +  ( vol * `  (
( ( (,) `  ( G `  j )
)  i^i  A )  \  ( ( (,) `  ( G `  j
) )  i^i  L
) ) ) ) )
208181, 190, 206, 207syl3anc 1184 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  ( ( (,) `  ( G `
 j ) )  i^i  A ) )  =  ( ( vol
* `  ( (
( (,) `  ( G `  j )
)  i^i  A )  i^i  ( ( (,) `  ( G `  j )
)  i^i  L )
) )  +  ( vol * `  (
( ( (,) `  ( G `  j )
)  i^i  A )  \  ( ( (,) `  ( G `  j
) )  i^i  L
) ) ) ) )
209 imassrn 5158 . . . . . . . . . . . . . . 15  |-  ( ( (,)  o.  F )
" ( 1 ... N ) )  C_  ran  ( (,)  o.  F
)
210209unissi 3982 . . . . . . . . . . . . . 14  |-  U. (
( (,)  o.  F
) " ( 1 ... N ) ) 
C_  U. ran  ( (,) 
o.  F )
211210, 74, 183sstr4i 3332 . . . . . . . . . . . . 13  |-  L  C_  A
212 sslin 3512 . . . . . . . . . . . . 13  |-  ( L 
C_  A  ->  (
( (,) `  ( G `  j )
)  i^i  L )  C_  ( ( (,) `  ( G `  j )
)  i^i  A )
)
213211, 212mp1i 12 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( (,) `  ( G `  j )
)  i^i  L )  C_  ( ( (,) `  ( G `  j )
)  i^i  A )
)
214 dfss1 3490 . . . . . . . . . . . 12  |-  ( ( ( (,) `  ( G `  j )
)  i^i  L )  C_  ( ( (,) `  ( G `  j )
)  i^i  A )  <->  ( ( ( (,) `  ( G `  j )
)  i^i  A )  i^i  ( ( (,) `  ( G `  j )
)  i^i  L )
)  =  ( ( (,) `  ( G `
 j ) )  i^i  L ) )
215213, 214sylib 189 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( ( (,) `  ( G `  j )
)  i^i  A )  i^i  ( ( (,) `  ( G `  j )
)  i^i  L )
)  =  ( ( (,) `  ( G `
 j ) )  i^i  L ) )
216215fveq2d 5674 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  ( ( ( (,) `  ( G `  j )
)  i^i  A )  i^i  ( ( (,) `  ( G `  j )
)  i^i  L )
) )  =  ( vol * `  (
( (,) `  ( G `  j )
)  i^i  L )
) )
217 indifdir 3542 . . . . . . . . . . . . 13  |-  ( ( A  \  L )  i^i  ( (,) `  ( G `  j )
) )  =  ( ( A  i^i  ( (,) `  ( G `  j ) ) ) 
\  ( L  i^i  ( (,) `  ( G `
 j ) ) ) )
218 incom 3478 . . . . . . . . . . . . . 14  |-  ( A  i^i  ( (,) `  ( G `  j )
) )  =  ( ( (,) `  ( G `  j )
)  i^i  A )
219 incom 3478 . . . . . . . . . . . . . 14  |-  ( L  i^i  ( (,) `  ( G `  j )
) )  =  ( ( (,) `  ( G `  j )
)  i^i  L )
220218, 219difeq12i 3408 . . . . . . . . . . . . 13  |-  ( ( A  i^i  ( (,) `  ( G `  j
) ) )  \ 
( L  i^i  ( (,) `  ( G `  j ) ) ) )  =  ( ( ( (,) `  ( G `  j )
)  i^i  A )  \  ( ( (,) `  ( G `  j
) )  i^i  L
) )
221217, 220eqtri 2409 . . . . . . . . . . . 12  |-  ( ( A  \  L )  i^i  ( (,) `  ( G `  j )
) )  =  ( ( ( (,) `  ( G `  j )
)  i^i  A )  \  ( ( (,) `  ( G `  j
) )  i^i  L
) )
22284eqcomd 2394 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( L  u.  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( (,) `  ( F `  i
) ) )  =  A )
22382ineq1d 3486 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( L  i^i  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( (,) `  ( F `  i
) ) )  =  ( U_ i  e.  ( 1 ... N
) ( (,) `  ( F `  i )
)  i^i  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
) ) )
224 fveq2 5670 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  i  ->  ( F `  x )  =  ( F `  i ) )
225224fveq2d 5674 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  i  ->  ( (,) `  ( F `  x ) )  =  ( (,) `  ( F `  i )
) )
226225cbvdisjv 4136 . . . . . . . . . . . . . . . . . . . 20  |-  (Disj  x  e.  NN ( (,) `  ( F `  x )
)  <-> Disj  i  e.  NN ( (,) `  ( F `
 i ) ) )
22716, 226sylib 189 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  -> Disj  i  e.  NN ( (,) `  ( F `  i ) ) )
22878ssriv 3297 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1 ... N )  C_  NN
229228a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( 1 ... N
)  C_  NN )
230 uzss 10440 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( N  +  1 )  e.  ( ZZ>= `  1
)  ->  ( ZZ>= `  ( N  +  1
) )  C_  ( ZZ>=
`  1 ) )
23142, 230syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  ( ZZ>= `  1
) )
232231, 39syl6sseqr 3340 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ZZ>= `  ( N  +  1 ) ) 
C_  NN )
233 uzdisj 11051 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1 ... ( ( N  +  1 )  -  1 ) )  i^i  ( ZZ>= `  ( N  +  1 ) ) )  =  (/)
23450ineq1d 3486 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( 1 ... ( ( N  + 
1 )  -  1 ) )  i^i  ( ZZ>=
`  ( N  + 
1 ) ) )  =  ( ( 1 ... N )  i^i  ( ZZ>= `  ( N  +  1 ) ) ) )
235233, 234syl5reqr 2436 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 1 ... N )  i^i  ( ZZ>=
`  ( N  + 
1 ) ) )  =  (/) )
236 disjiun 4145 . . . . . . . . . . . . . . . . . . 19  |-  ( (Disj  i  e.  NN ( (,) `  ( F `  i ) )  /\  ( ( 1 ... N )  C_  NN  /\  ( ZZ>= `  ( N  +  1 ) ) 
C_  NN  /\  (
( 1 ... N
)  i^i  ( ZZ>= `  ( N  +  1
) ) )  =  (/) ) )  ->  ( U_ i  e.  (
1 ... N ) ( (,) `  ( F `
 i ) )  i^i  U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( (,) `  ( F `
 i ) ) )  =  (/) )
237227, 229, 232, 235, 236syl13anc 1186 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( U_ i  e.  ( 1 ... N
) ( (,) `  ( F `  i )
)  i^i  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
) )  =  (/) )
238223, 237eqtrd 2421 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( L  i^i  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( (,) `  ( F `  i
) ) )  =  (/) )
239 uneqdifeq 3661 . . . . . . . . . . . . . . . . 17  |-  ( ( L  C_  A  /\  ( L  i^i  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
) )  =  (/) )  ->  ( ( L  u.  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
) )  =  A  <-> 
( A  \  L
)  =  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
) ) )
240211, 238, 239sylancr 645 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( L  u.  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( (,) `  ( F `  i
) ) )  =  A  <->  ( A  \  L )  =  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( (,) `  ( F `  i
) ) ) )
241222, 240mpbid 202 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A  \  L
)  =  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
) )
242241adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( A  \  L )  = 
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( (,) `  ( F `
 i ) ) )
243242ineq2d 3487 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( (,) `  ( G `  j )
)  i^i  ( A  \  L ) )  =  ( ( (,) `  ( G `  j )
)  i^i  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
) ) )
244 incom 3478 . . . . . . . . . . . . 13  |-  ( ( A  \  L )  i^i  ( (,) `  ( G `  j )
) )  =  ( ( (,) `  ( G `  j )
)  i^i  ( A  \  L ) )
245106, 103eqtri 2409 . . . . . . . . . . . . 13  |-  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  =  ( ( (,) `  ( G `  j )
)  i^i  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( (,) `  ( F `  i )
) )
246243, 244, 2453eqtr4g 2446 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( A  \  L
)  i^i  ( (,) `  ( G `  j
) ) )  = 
U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )
247221, 246syl5eqr 2435 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( ( (,) `  ( G `  j )
)  i^i  A )  \  ( ( (,) `  ( G `  j
) )  i^i  L
) )  =  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )
248247fveq2d 5674 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  ( ( ( (,) `  ( G `  j )
)  i^i  A )  \  ( ( (,) `  ( G `  j
) )  i^i  L
) ) )  =  ( vol * `  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) ) )
249216, 248oveq12d 6040 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( vol * `  ( ( ( (,) `  ( G `  j
) )  i^i  A
)  i^i  ( ( (,) `  ( G `  j ) )  i^i 
L ) ) )  +  ( vol * `  ( ( ( (,) `  ( G `  j
) )  i^i  A
)  \  ( ( (,) `  ( G `  j ) )  i^i 
L ) ) ) )  =  ( ( vol * `  (
( (,) `  ( G `  j )
)  i^i  L )
)  +  ( vol
* `  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) )
250208, 249eqtrd 2421 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  ( ( (,) `  ( G `
 j ) )  i^i  A ) )  =  ( ( vol
* `  ( ( (,) `  ( G `  j ) )  i^i 
L ) )  +  ( vol * `  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) ) ) )
251206, 145resubcld 9399 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
)  -  ( C  /  M ) )  e.  RR )
252 inss2 3507 . . . . . . . . . . . . . 14  |-  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) )  C_  ( (,) `  ( G `  j ) )
253252a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  i  e.  ( 1 ... N
) )  ->  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  ( (,) `  ( G `
 j ) ) )
254194adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  i  e.  ( 1 ... N
) )  ->  ( (,) `  ( G `  j ) )  C_  RR )
255204adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  i  e.  ( 1 ... N
) )  ->  ( vol * `  ( (,) `  ( G `  j
) ) )  e.  RR )
256 ovolsscl 19251 . . . . . . . . . . . . 13  |-  ( ( ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  ( (,) `  ( G `
 j ) )  /\  ( (,) `  ( G `  j )
)  C_  RR  /\  ( vol * `  ( (,) `  ( G `  j
) ) )  e.  RR )  ->  ( vol * `  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  e.  RR )
257253, 254, 255, 256syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  i  e.  ( 1 ... N
) )  ->  ( vol * `  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  e.  RR )
258153, 257fsumrecl 12457 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  sum_ i  e.  ( 1 ... N
) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  e.  RR )
259 uniioombl.n2 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. j  e.  ( 1 ... M ) ( abs `  ( sum_ i  e.  ( 1 ... N ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  M
) )
260259r19.21bi 2749 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( abs `  ( sum_ i  e.  ( 1 ... N
) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  M
) )
261258, 206, 145absdifltd 12165 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( abs `  ( sum_ i  e.  ( 1 ... N ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  M
)  <->  ( ( ( vol * `  (
( (,) `  ( G `  j )
)  i^i  A )
)  -  ( C  /  M ) )  <  sum_ i  e.  ( 1 ... N ) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  <  ( ( vol
* `  ( ( (,) `  ( G `  j ) )  i^i 
A ) )  +  ( C  /  M
) ) ) ) )
262260, 261mpbid 202 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
)  -  ( C  /  M ) )  <  sum_ i  e.  ( 1 ... N ) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  /\  sum_ i  e.  ( 1 ... N ) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  <  ( ( vol
* `  ( ( (,) `  ( G `  j ) )  i^i 
A ) )  +  ( C  /  M
) ) ) )
263262simpld 446 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
)  -  ( C  /  M ) )  <  sum_ i  e.  ( 1 ... N ) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
264251, 258, 263ltled 9155 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
)  -  ( C  /  M ) )  <_  sum_ i  e.  ( 1 ... N ) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
265152fveq2d 5674 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  ( ( (,) `  ( G `
 j ) )  i^i  L ) )  =  ( vol * `  U_ i  e.  ( 1 ... N ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
266 mblvol 19295 . . . . . . . . . . . . . . . . 17  |-  ( ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  e. 
dom  vol  ->  ( vol `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  =  ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
267177, 266syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  i  e.  ( 1 ... N
) )  ->  ( vol `  ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) ) )  =  ( vol
* `  ( ( (,) `  ( F `  i ) )  i^i  ( (,) `  ( G `  j )
) ) ) )
268267, 257eqeltrd 2463 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  i  e.  ( 1 ... N
) )  ->  ( vol `  ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) ) )  e.  RR )
269177, 268jca 519 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( 1 ... M
) )  /\  i  e.  ( 1 ... N
) )  ->  (
( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  e. 
dom  vol  /\  ( vol `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  e.  RR ) )
270269ralrimiva 2734 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  A. i  e.  ( 1 ... N
) ( ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) )  e.  dom  vol 
/\  ( vol `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  e.  RR ) )
271 inss1 3506 . . . . . . . . . . . . . . . 16  |-  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) )  C_  ( (,) `  ( F `  i ) )
272271rgenw 2718 . . . . . . . . . . . . . . 15  |-  A. i  e.  NN  ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) ) 
C_  ( (,) `  ( F `  i )
)
273227adantr 452 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  -> Disj  i  e.  NN ( (,) `  ( F `  i )
) )
274 disjss2 4128 . . . . . . . . . . . . . . 15  |-  ( A. i  e.  NN  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  ( (,) `  ( F `
 i ) )  ->  (Disj  i  e.  NN ( (,) `  ( F `
 i ) )  -> Disj  i  e.  NN ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
275272, 273, 274mpsyl 61 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  -> Disj  i  e.  NN ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) ) )
276 disjss1 4131 . . . . . . . . . . . . . 14  |-  ( ( 1 ... N ) 
C_  NN  ->  (Disj  i  e.  NN ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) )  -> Disj  i  e.  ( 1 ... N ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
277228, 275, 276mpsyl 61 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  -> Disj  i  e.  ( 1 ... N
) ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) ) )
278 volfiniun 19310 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... N
)  e.  Fin  /\  A. i  e.  ( 1 ... N ) ( ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  e. 
dom  vol  /\  ( vol `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  e.  RR )  /\ Disj  i  e.  ( 1 ... N ) ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  -> 
( vol `  U_ i  e.  ( 1 ... N
) ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) ) )  =  sum_ i  e.  ( 1 ... N
) ( vol `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
279153, 270, 277, 278syl3anc 1184 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol `  U_ i  e.  ( 1 ... N
) ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) ) )  =  sum_ i  e.  ( 1 ... N
) ( vol `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
280 mblvol 19295 . . . . . . . . . . . . 13  |-  ( U_ i  e.  ( 1 ... N ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  e. 
dom  vol  ->  ( vol ` 
U_ i  e.  ( 1 ... N ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  =  ( vol * `  U_ i  e.  ( 1 ... N ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
281180, 280syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol `  U_ i  e.  ( 1 ... N
) ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) ) )  =  ( vol
* `  U_ i  e.  ( 1 ... N
) ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) ) ) )
282267sumeq2dv 12426 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  sum_ i  e.  ( 1 ... N
) ( vol `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  =  sum_ i  e.  ( 1 ... N ) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
283279, 281, 2823eqtr3d 2429 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  U_ i  e.  ( 1 ... N
) ( ( (,) `  ( F `  i
) )  i^i  ( (,) `  ( G `  j ) ) ) )  =  sum_ i  e.  ( 1 ... N
) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
284265, 283eqtrd 2421 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  ( ( (,) `  ( G `
 j ) )  i^i  L ) )  =  sum_ i  e.  ( 1 ... N ) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
285264, 284breqtrrd 4181 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
)  -  ( C  /  M ) )  <_  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  L )
) )
286284, 258eqeltrd 2463 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  ( ( (,) `  ( G `
 j ) )  i^i  L ) )  e.  RR )
287206, 145, 286lesubaddd 9557 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
)  -  ( C  /  M ) )  <_  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  L )
)  <->  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
)  <_  ( ( vol * `  ( ( (,) `  ( G `
 j ) )  i^i  L ) )  +  ( C  /  M ) ) ) )
288285, 287mpbid 202 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  ( ( (,) `  ( G `
 j ) )  i^i  A ) )  <_  ( ( vol
* `  ( ( (,) `  ( G `  j ) )  i^i 
L ) )  +  ( C  /  M
) ) )
289250, 288eqbrtrrd 4177 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( vol * `  ( ( (,) `  ( G `  j )
)  i^i  L )
)  +  ( vol
* `  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )  <_  ( ( vol * `  ( ( (,) `  ( G `
 j ) )  i^i  L ) )  +  ( C  /  M ) ) )
290136, 145, 286leadd2d 9555 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  (
( vol * `  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  <_ 
( C  /  M
)  <->  ( ( vol
* `  ( ( (,) `  ( G `  j ) )  i^i 
L ) )  +  ( vol * `  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) ) )  <_  ( ( vol
* `  ( ( (,) `  ( G `  j ) )  i^i 
L ) )  +  ( C  /  M
) ) ) )
291289, 290mpbird 224 . . . . . 6  |-  ( (
ph  /\  j  e.  ( 1 ... M
) )  ->  ( vol * `  U_ i  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  <_  ( C  /  M ) )
292129, 136, 145, 291fsumle 12507 . . . . 5  |-  ( ph  -> 
sum_ j  e.  ( 1 ... M ) ( vol * `  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  <_  sum_ j  e.  ( 1 ... M ) ( C  /  M ) )
293144recnd 9049 . . . . . . 7  |-  ( ph  ->  ( C  /  M
)  e.  CC )
294 fsumconst 12502 . . . . . . 7  |-  ( ( ( 1 ... M
)  e.  Fin  /\  ( C  /  M
)  e.  CC )  ->  sum_ j  e.  ( 1 ... M ) ( C  /  M
)  =  ( (
# `  ( 1 ... M ) )  x.  ( C  /  M
) ) )
295129, 293, 294syl2anc 643 . . . . . 6  |-  ( ph  -> 
sum_ j  e.  ( 1 ... M ) ( C  /  M
)  =  ( (
# `  ( 1 ... M ) )  x.  ( C  /  M
) ) )
296 nnnn0 10162 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  NN0 )
297 hashfz1 11559 . . . . . . . 8  |-  ( M  e.  NN0  ->  ( # `  ( 1 ... M
) )  =  M )
298143, 296, 2973syl 19 . . . . . . 7  |-  ( ph  ->  ( # `  (
1 ... M ) )  =  M )
299298oveq1d 6037 . . . . . 6  |-  ( ph  ->  ( ( # `  (
1 ... M ) )  x.  ( C  /  M ) )  =  ( M  x.  ( C  /  M ) ) )
300121recnd 9049 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
301143nncnd 9950 . . . . . . 7  |-  ( ph  ->  M  e.  CC )
302143nnne0d 9978 . . . . . . 7  |-  ( ph  ->  M  =/=  0 )
303300, 301, 302divcan2d 9726 . . . . . 6  |-  ( ph  ->  ( M  x.  ( C  /  M ) )  =  C )
304295, 299, 3033eqtrd 2425 . . . . 5  |-  ( ph  -> 
sum_ j  e.  ( 1 ... M ) ( C  /  M
)  =  C )
305292, 304breqtrd 4179 . . . 4  |-  ( ph  -> 
sum_ j  e.  ( 1 ... M ) ( vol * `  U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  <_  C )
306119, 137, 121, 142, 305letrd 9161 . . 3  |-  ( ph  ->  ( vol * `  U_ j  e.  ( 1 ... M ) U_ i  e.  ( ZZ>= `  ( N  +  1
) ) ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  <_  C )
307119, 121, 37, 306leadd2dd 9575 . 2  |-  ( ph  ->  ( ( vol * `  ( K  i^i  L
) )  +  ( vol * `  U_ j  e.  ( 1 ... M
) U_ i  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )  <_  ( ( vol * `  ( K  i^i  L ) )  +  C ) )
30833, 120, 122, 128, 307letrd 9161 1  |-  ( ph  ->  ( vol * `  ( K  i^i  A ) )  <_  ( ( vol * `  ( K  i^i  L ) )  +  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2651    \ cdif 3262    u. cun 3263    i^i cin 3264    C_ wss 3265   (/)c0 3573   ~Pcpw 3744   <.cop 3762   U.cuni 3959   U_ciun 4037  Disj wdisj 4125   class class class wbr 4155    X. cxp 4818   dom cdm 4820   ran crn 4821   "cima 4823    o. ccom 4824   Fun wfun 5390    Fn wfn 5391   -->wf 5392   ` cfv 5396  (class class class)co 6022   1stc1st 6288   2ndc2nd 6289   Fincfn 7047   supcsup 7382   CCcc 8923   RRcr 8924   0cc0 8925   1c1 8926    + caddc 8928    x. cmul 8930   RR*cxr 9054    < clt 9055    <_ cle 9056    - cmin 9225    / cdiv 9611   NNcn 9934   NN0cn0 10155   ZZ>=cuz 10422   RR+crp 10546   (,)cioo 10850   [,]cicc 10853   ...cfz 10977    seq cseq 11252   #chash 11547   abscabs 11968   sum_csu 12408   vol
*covol 19228   volcvol 19229
This theorem is referenced by:  uniioombllem5  19348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-disj 4126  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-se 4485  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-isom 5405  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-of 6246  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-2o 6663  df-oadd 6666  df-er 6843  df-map 6958  df-pm 6959  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-fi 7353  df-sup 7383  df-oi 7414  df-card 7761  df-acn 7764  df-cda 7983  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-3 9993  df-n0 10156  df-z 10217  df-uz 10423  df-q 10509  df-rp 10547  df-xneg 10644  df-xadd 10645  df-xmul 10646  df-ioo 10854  df-ico 10856  df-icc 10857  df-fz 10978  df-fzo 11068  df-fl 11131  df-seq 11253  df-exp 11312  df-hash 11548  df-cj 11833  df-re 11834  df-im 11835  df-sqr 11969  df-abs 11970  df-clim 12211  df-rlim 12212  df-sum 12409  df-rest 13579  df-topgen 13596  df-xmet 16621  df-met 16622  df-bl 16623  df-mopn 16624  df-top 16888  df-bases 16890  df-topon 16891  df-cmp 17374  df-ovol 19230  df-vol 19231
  Copyright terms: Public domain W3C validator