MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioombllem6 Unicode version

Theorem uniioombllem6 19047
Description: Lemma for uniioombl 19048. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.2  |-  ( ph  -> Disj  x  e.  NN ( (,) `  ( F `  x ) ) )
uniioombl.3  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
uniioombl.a  |-  A  = 
U. ran  ( (,)  o.  F )
uniioombl.e  |-  ( ph  ->  ( vol * `  E )  e.  RR )
uniioombl.c  |-  ( ph  ->  C  e.  RR+ )
uniioombl.g  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.s  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
uniioombl.t  |-  T  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
uniioombl.v  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol * `  E )  +  C
) )
Assertion
Ref Expression
uniioombllem6  |-  ( ph  ->  ( ( vol * `  ( E  i^i  A
) )  +  ( vol * `  ( E  \  A ) ) )  <_  ( ( vol * `  E )  +  ( 4  x.  C ) ) )
Distinct variable groups:    x, F    x, G    x, A    x, C    ph, x    x, T
Allowed substitution hints:    S( x)    E( x)

Proof of Theorem uniioombllem6
Dummy variables  a 
i  j  k  n  y  z  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 10355 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1z 10145 . . . . 5  |-  1  e.  ZZ
32a1i 10 . . . 4  |-  ( ph  ->  1  e.  ZZ )
4 uniioombl.c . . . 4  |-  ( ph  ->  C  e.  RR+ )
5 eqidd 2359 . . . 4  |-  ( (
ph  /\  m  e.  NN )  ->  ( T `
 m )  =  ( T `  m
) )
6 uniioombl.t . . . . . 6  |-  T  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  G ) )
7 eqidd 2359 . . . . . 6  |-  ( (
ph  /\  a  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  a )  =  ( ( ( abs  o.  -  )  o.  G
) `  a )
)
8 uniioombl.g . . . . . . . . . 10  |-  ( ph  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
9 eqid 2358 . . . . . . . . . . 11  |-  ( ( abs  o.  -  )  o.  G )  =  ( ( abs  o.  -  )  o.  G )
109ovolfsf 18935 . . . . . . . . . 10  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  (
( abs  o.  -  )  o.  G ) : NN --> ( 0 [,)  +oo ) )
118, 10syl 15 . . . . . . . . 9  |-  ( ph  ->  ( ( abs  o.  -  )  o.  G
) : NN --> ( 0 [,)  +oo ) )
12 ffvelrn 5746 . . . . . . . . 9  |-  ( ( ( ( abs  o.  -  )  o.  G
) : NN --> ( 0 [,)  +oo )  /\  a  e.  NN )  ->  (
( ( abs  o.  -  )  o.  G
) `  a )  e.  ( 0 [,)  +oo ) )
1311, 12sylan 457 . . . . . . . 8  |-  ( (
ph  /\  a  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  a )  e.  ( 0 [,)  +oo )
)
14 elrege0 10838 . . . . . . . 8  |-  ( ( ( ( abs  o.  -  )  o.  G
) `  a )  e.  ( 0 [,)  +oo ) 
<->  ( ( ( ( abs  o.  -  )  o.  G ) `  a
)  e.  RR  /\  0  <_  ( ( ( abs  o.  -  )  o.  G ) `  a
) ) )
1513, 14sylib 188 . . . . . . 7  |-  ( (
ph  /\  a  e.  NN )  ->  ( ( ( ( abs  o.  -  )  o.  G
) `  a )  e.  RR  /\  0  <_ 
( ( ( abs 
o.  -  )  o.  G ) `  a
) ) )
1615simpld 445 . . . . . 6  |-  ( (
ph  /\  a  e.  NN )  ->  ( ( ( abs  o.  -  )  o.  G ) `  a )  e.  RR )
1715simprd 449 . . . . . 6  |-  ( (
ph  /\  a  e.  NN )  ->  0  <_ 
( ( ( abs 
o.  -  )  o.  G ) `  a
) )
18 uniioombl.1 . . . . . . . 8  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
19 uniioombl.2 . . . . . . . 8  |-  ( ph  -> Disj  x  e.  NN ( (,) `  ( F `  x ) ) )
20 uniioombl.3 . . . . . . . 8  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
21 uniioombl.a . . . . . . . 8  |-  A  = 
U. ran  ( (,)  o.  F )
22 uniioombl.e . . . . . . . 8  |-  ( ph  ->  ( vol * `  E )  e.  RR )
23 uniioombl.s . . . . . . . 8  |-  ( ph  ->  E  C_  U. ran  ( (,)  o.  G ) )
24 uniioombl.v . . . . . . . 8  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol * `  E )  +  C
) )
2518, 19, 20, 21, 22, 4, 8, 23, 6, 24uniioombllem1 19040 . . . . . . 7  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR )
269, 6ovolsf 18936 . . . . . . . . . . . . 13  |-  ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  T : NN --> ( 0 [,) 
+oo ) )
278, 26syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  T : NN --> ( 0 [,)  +oo ) )
28 frn 5478 . . . . . . . . . . . 12  |-  ( T : NN --> ( 0 [,)  +oo )  ->  ran  T 
C_  ( 0 [,) 
+oo ) )
2927, 28syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ran  T  C_  (
0 [,)  +oo ) )
30 icossxr 10826 . . . . . . . . . . 11  |-  ( 0 [,)  +oo )  C_  RR*
3129, 30syl6ss 3267 . . . . . . . . . 10  |-  ( ph  ->  ran  T  C_  RR* )
32 supxrub 10735 . . . . . . . . . 10  |-  ( ( ran  T  C_  RR*  /\  x  e.  ran  T )  ->  x  <_  sup ( ran  T ,  RR* ,  <  )
)
3331, 32sylan 457 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ran  T )  ->  x  <_  sup ( ran  T ,  RR* ,  <  )
)
3433ralrimiva 2702 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ran  T  x  <_  sup ( ran  T ,  RR* ,  <  ) )
35 ffn 5472 . . . . . . . . . 10  |-  ( T : NN --> ( 0 [,)  +oo )  ->  T  Fn  NN )
3627, 35syl 15 . . . . . . . . 9  |-  ( ph  ->  T  Fn  NN )
37 breq1 4107 . . . . . . . . . 10  |-  ( x  =  ( T `  m )  ->  (
x  <_  sup ( ran  T ,  RR* ,  <  )  <-> 
( T `  m
)  <_  sup ( ran  T ,  RR* ,  <  ) ) )
3837ralrn 5751 . . . . . . . . 9  |-  ( T  Fn  NN  ->  ( A. x  e.  ran  T  x  <_  sup ( ran  T ,  RR* ,  <  )  <->  A. m  e.  NN  ( T `  m )  <_  sup ( ran  T ,  RR* ,  <  )
) )
3936, 38syl 15 . . . . . . . 8  |-  ( ph  ->  ( A. x  e. 
ran  T  x  <_  sup ( ran  T ,  RR* ,  <  )  <->  A. m  e.  NN  ( T `  m )  <_  sup ( ran  T ,  RR* ,  <  ) ) )
4034, 39mpbid 201 . . . . . . 7  |-  ( ph  ->  A. m  e.  NN  ( T `  m )  <_  sup ( ran  T ,  RR* ,  <  )
)
41 breq2 4108 . . . . . . . . 9  |-  ( x  =  sup ( ran 
T ,  RR* ,  <  )  ->  ( ( T `
 m )  <_  x 
<->  ( T `  m
)  <_  sup ( ran  T ,  RR* ,  <  ) ) )
4241ralbidv 2639 . . . . . . . 8  |-  ( x  =  sup ( ran 
T ,  RR* ,  <  )  ->  ( A. m  e.  NN  ( T `  m )  <_  x  <->  A. m  e.  NN  ( T `  m )  <_  sup ( ran  T ,  RR* ,  <  )
) )
4342rspcev 2960 . . . . . . 7  |-  ( ( sup ( ran  T ,  RR* ,  <  )  e.  RR  /\  A. m  e.  NN  ( T `  m )  <_  sup ( ran  T ,  RR* ,  <  ) )  ->  E. x  e.  RR  A. m  e.  NN  ( T `  m )  <_  x )
4425, 40, 43syl2anc 642 . . . . . 6  |-  ( ph  ->  E. x  e.  RR  A. m  e.  NN  ( T `  m )  <_  x )
451, 6, 3, 7, 16, 17, 44isumsup2 12402 . . . . 5  |-  ( ph  ->  T  ~~>  sup ( ran  T ,  RR ,  <  )
)
46 0re 8928 . . . . . . . 8  |-  0  e.  RR
47 pnfxr 10547 . . . . . . . 8  |-  +oo  e.  RR*
48 icossre 10822 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  +oo 
e.  RR* )  ->  (
0 [,)  +oo )  C_  RR )
4946, 47, 48mp2an 653 . . . . . . 7  |-  ( 0 [,)  +oo )  C_  RR
5029, 49syl6ss 3267 . . . . . 6  |-  ( ph  ->  ran  T  C_  RR )
51 1nn 9847 . . . . . . . . 9  |-  1  e.  NN
52 fdm 5476 . . . . . . . . . 10  |-  ( T : NN --> ( 0 [,)  +oo )  ->  dom  T  =  NN )
5327, 52syl 15 . . . . . . . . 9  |-  ( ph  ->  dom  T  =  NN )
5451, 53syl5eleqr 2445 . . . . . . . 8  |-  ( ph  ->  1  e.  dom  T
)
55 ne0i 3537 . . . . . . . 8  |-  ( 1  e.  dom  T  ->  dom  T  =/=  (/) )
5654, 55syl 15 . . . . . . 7  |-  ( ph  ->  dom  T  =/=  (/) )
57 dm0rn0 4977 . . . . . . . 8  |-  ( dom 
T  =  (/)  <->  ran  T  =  (/) )
5857necon3bii 2553 . . . . . . 7  |-  ( dom 
T  =/=  (/)  <->  ran  T  =/=  (/) )
5956, 58sylib 188 . . . . . 6  |-  ( ph  ->  ran  T  =/=  (/) )
60 breq2 4108 . . . . . . . . 9  |-  ( y  =  sup ( ran 
T ,  RR* ,  <  )  ->  ( x  <_ 
y  <->  x  <_  sup ( ran  T ,  RR* ,  <  ) ) )
6160ralbidv 2639 . . . . . . . 8  |-  ( y  =  sup ( ran 
T ,  RR* ,  <  )  ->  ( A. x  e.  ran  T  x  <_ 
y  <->  A. x  e.  ran  T  x  <_  sup ( ran  T ,  RR* ,  <  ) ) )
6261rspcev 2960 . . . . . . 7  |-  ( ( sup ( ran  T ,  RR* ,  <  )  e.  RR  /\  A. x  e.  ran  T  x  <_  sup ( ran  T ,  RR* ,  <  ) )  ->  E. y  e.  RR  A. x  e.  ran  T  x  <_  y )
6325, 34, 62syl2anc 642 . . . . . 6  |-  ( ph  ->  E. y  e.  RR  A. x  e.  ran  T  x  <_  y )
64 supxrre 10738 . . . . . 6  |-  ( ( ran  T  C_  RR  /\ 
ran  T  =/=  (/)  /\  E. y  e.  RR  A. x  e.  ran  T  x  <_ 
y )  ->  sup ( ran  T ,  RR* ,  <  )  =  sup ( ran  T ,  RR ,  <  ) )
6550, 59, 63, 64syl3anc 1182 . . . . 5  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  =  sup ( ran  T ,  RR ,  <  )
)
6645, 65breqtrrd 4130 . . . 4  |-  ( ph  ->  T  ~~>  sup ( ran  T ,  RR* ,  <  )
)
671, 3, 4, 5, 66climi2 12081 . . 3  |-  ( ph  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C )
681r19.2uz 11931 . . 3  |-  ( E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C  ->  E. m  e.  NN  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
)
6967, 68syl 15 . 2  |-  ( ph  ->  E. m  e.  NN  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)
702a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  1  e.  ZZ )
714ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  C  e.  RR+ )
72 simplrl 736 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  m  e.  NN )
7372nnrpd 10481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  m  e.  RR+ )
7471, 73rpdivcld 10499 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( C  /  m )  e.  RR+ )
75 fvex 5622 . . . . . . . . . . . . . . . . . 18  |-  ( (,) `  ( F `  z
) )  e.  _V
7675inex1 4236 . . . . . . . . . . . . . . . . 17  |-  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  j )
) )  e.  _V
7776rgenw 2686 . . . . . . . . . . . . . . . 16  |-  A. z  e.  NN  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  j ) ) )  e.  _V
78 eqid 2358 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  NN  |->  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  j )
) ) )  =  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )
7978fnmpt 5452 . . . . . . . . . . . . . . . 16  |-  ( A. z  e.  NN  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) )  e. 
_V  ->  ( z  e.  NN  |->  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  j ) ) ) )  Fn  NN )
8077, 79mp1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  ->  (
z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )  Fn  NN )
81 elfznn 10911 . . . . . . . . . . . . . . 15  |-  ( i  e.  ( 1 ... n )  ->  i  e.  NN )
82 fvco2 5677 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )  Fn  NN  /\  i  e.  NN )  ->  (
( vol *  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) `  i )  =  ( vol * `  ( ( z  e.  NN  |->  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  j ) ) ) ) `  i ) ) )
8380, 81, 82syl2an 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  (
( vol *  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) `  i )  =  ( vol * `  ( ( z  e.  NN  |->  ( ( (,) `  ( F `  z
) )  i^i  ( (,) `  ( G `  j ) ) ) ) `  i ) ) )
8481adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  i  e.  NN )
85 fveq2 5608 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  i  ->  ( F `  z )  =  ( F `  i ) )
8685fveq2d 5612 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  i  ->  ( (,) `  ( F `  z ) )  =  ( (,) `  ( F `  i )
) )
8786ineq1d 3445 . . . . . . . . . . . . . . . . 17  |-  ( z  =  i  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) )  =  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )
88 fvex 5622 . . . . . . . . . . . . . . . . . 18  |-  ( (,) `  ( F `  i
) )  e.  _V
8988inex1 4236 . . . . . . . . . . . . . . . . 17  |-  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) )  e.  _V
9087, 78, 89fvmpt 5685 . . . . . . . . . . . . . . . 16  |-  ( i  e.  NN  ->  (
( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) `
 i )  =  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )
9184, 90syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  (
( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) `
 i )  =  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )
9291fveq2d 5612 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  ( vol * `  ( ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) `
 i ) )  =  ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
9383, 92eqtrd 2390 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  (
( vol *  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) `  i )  =  ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
94 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  ->  n  e.  NN )
9594, 1syl6eleq 2448 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  ->  n  e.  ( ZZ>= `  1 )
)
96 inss2 3466 . . . . . . . . . . . . . . . 16  |-  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) )  C_  ( (,) `  ( G `  j ) )
9796a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  ( (,) `  ( G `
 j ) ) )
98 inss2 3466 . . . . . . . . . . . . . . . . . . . . 21  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
998adantr 451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
100 elfznn 10911 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  e.  ( 1 ... m )  ->  j  e.  NN )
101 ffvelrn 5746 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  j  e.  NN )  ->  ( G `  j )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
10299, 100, 101syl2an 463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( G `  j )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
10398, 102sseldi 3254 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( G `  j )  e.  ( RR  X.  RR ) )
104 1st2nd2 6246 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G `  j )  e.  ( RR  X.  RR )  ->  ( G `
 j )  = 
<. ( 1st `  ( G `  j )
) ,  ( 2nd `  ( G `  j
) ) >. )
105103, 104syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( G `  j )  =  <. ( 1st `  ( G `  j )
) ,  ( 2nd `  ( G `  j
) ) >. )
106105fveq2d 5612 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( (,) `  ( G `  j ) )  =  ( (,) `  <. ( 1st `  ( G `
 j ) ) ,  ( 2nd `  ( G `  j )
) >. ) )
107 df-ov 5948 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) )  =  ( (,) `  <. ( 1st `  ( G `  j ) ) ,  ( 2nd `  ( G `  j )
) >. )
108106, 107syl6eqr 2408 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( (,) `  ( G `  j ) )  =  ( ( 1st `  ( G `  j )
) (,) ( 2nd `  ( G `  j
) ) ) )
109 ioossre 10804 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) )  C_  RR
110109a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  (
( 1st `  ( G `  j )
) (,) ( 2nd `  ( G `  j
) ) )  C_  RR )
111108, 110eqsstrd 3288 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( (,) `  ( G `  j ) )  C_  RR )
112111ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  ( (,) `  ( G `  j ) )  C_  RR )
113108fveq2d 5612 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( vol * `  ( (,) `  ( G `  j
) ) )  =  ( vol * `  ( ( 1st `  ( G `  j )
) (,) ( 2nd `  ( G `  j
) ) ) ) )
114 ovolfcl 18930 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  j  e.  NN )  ->  (
( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) ) )
11599, 100, 114syl2an 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  (
( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) ) )
116 ovolioo 19029 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1st `  ( G `  j )
)  e.  RR  /\  ( 2nd `  ( G `
 j ) )  e.  RR  /\  ( 1st `  ( G `  j ) )  <_ 
( 2nd `  ( G `  j )
) )  ->  ( vol * `  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
117115, 116syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( vol * `  ( ( 1st `  ( G `
 j ) ) (,) ( 2nd `  ( G `  j )
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
118113, 117eqtrd 2390 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( vol * `  ( (,) `  ( G `  j
) ) )  =  ( ( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) ) )
119115simp2d 968 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( 2nd `  ( G `  j ) )  e.  RR )
120115simp1d 967 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( 1st `  ( G `  j ) )  e.  RR )
121119, 120resubcld 9301 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  (
( 2nd `  ( G `  j )
)  -  ( 1st `  ( G `  j
) ) )  e.  RR )
122118, 121eqeltrd 2432 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  ( vol * `  ( (,) `  ( G `  j
) ) )  e.  RR )
123122ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  ( vol * `  ( (,) `  ( G `  j
) ) )  e.  RR )
124 ovolsscl 18949 . . . . . . . . . . . . . . 15  |-  ( ( ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  C_  ( (,) `  ( G `
 j ) )  /\  ( (,) `  ( G `  j )
)  C_  RR  /\  ( vol * `  ( (,) `  ( G `  j
) ) )  e.  RR )  ->  ( vol * `  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  e.  RR )
12597, 112, 123, 124syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  ( vol * `  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  e.  RR )
126125recnd 8951 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  /\  i  e.  ( 1 ... n
) )  ->  ( vol * `  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  e.  CC )
12793, 95, 126fsumser 12300 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  ->  sum_ i  e.  ( 1 ... n
) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  =  (  seq  1
(  +  ,  ( vol *  o.  (
z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) ) `  n
) )
128127eqcomd 2363 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( m  e.  NN  /\  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  /\  n  e.  NN )  ->  (  seq  1 (  +  , 
( vol *  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) ) `  n
)  =  sum_ i  e.  ( 1 ... n
) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
129 fveq2 5608 . . . . . . . . . . . . . . . . 17  |-  ( z  =  k  ->  ( F `  z )  =  ( F `  k ) )
130129fveq2d 5612 . . . . . . . . . . . . . . . 16  |-  ( z  =  k  ->  ( (,) `  ( F `  z ) )  =  ( (,) `  ( F `  k )
) )
131130ineq1d 3445 . . . . . . . . . . . . . . 15  |-  ( z  =  k  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) )  =  ( ( (,) `  ( F `  k )
)  i^i  ( (,) `  ( G `  j
) ) ) )
132131cbvmptv 4192 . . . . . . . . . . . . . 14  |-  ( z  e.  NN  |->  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  j )
) ) )  =  ( k  e.  NN  |->  ( ( (,) `  ( F `  k )
)  i^i  ( (,) `  ( G `  j
) ) ) )
133 eqeq1 2364 . . . . . . . . . . . . . . . 16  |-  ( z  =  x  ->  (
z  =  (/)  <->  x  =  (/) ) )
134 supeq1 7288 . . . . . . . . . . . . . . . . 17  |-  ( z  =  x  ->  sup ( z ,  RR* ,  `'  <  )  =  sup ( x ,  RR* ,  `'  <  ) )
135 supeq1 7288 . . . . . . . . . . . . . . . . 17  |-  ( z  =  x  ->  sup ( z ,  RR* ,  <  )  =  sup ( x ,  RR* ,  <  ) )
136134, 135opeq12d 3885 . . . . . . . . . . . . . . . 16  |-  ( z  =  x  ->  <. sup (
z ,  RR* ,  `'  <  ) ,  sup (
z ,  RR* ,  <  )
>.  =  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. )
137133, 136ifbieq2d 3661 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  if ( z  =  (/) , 
<. 0 ,  0
>. ,  <. sup (
z ,  RR* ,  `'  <  ) ,  sup (
z ,  RR* ,  <  )
>. )  =  if ( x  =  (/) ,  <. 0 ,  0 >. , 
<. sup ( x , 
RR* ,  `'  <  ) ,  sup ( x ,  RR* ,  <  ) >. ) )
138137cbvmptv 4192 . . . . . . . . . . . . . 14  |-  ( z  e.  ran  (,)  |->  if ( z  =  (/) , 
<. 0 ,  0
>. ,  <. sup (
z ,  RR* ,  `'  <  ) ,  sup (
z ,  RR* ,  <  )
>. ) )  =  ( x  e.  ran  (,)  |->  if ( x  =  (/) , 
<. 0 ,  0
>. ,  <. sup (
x ,  RR* ,  `'  <  ) ,  sup (
x ,  RR* ,  <  )
>. ) )
13918, 19, 20, 21, 22, 4, 8, 23, 6, 24, 132, 138uniioombllem2 19042 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN )  ->  seq  1
(  +  ,  ( vol *  o.  (
z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) )  ~~>  ( vol
* `  ( ( (,) `  ( G `  j ) )  i^i 
A ) ) )
140100, 139sylan2 460 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( 1 ... m
) )  ->  seq  1 (  +  , 
( vol *  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) )  ~~>  ( vol
* `  ( ( (,) `  ( G `  j ) )  i^i 
A ) ) )
141140adantlr 695 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  seq  1 (  +  , 
( vol *  o.  ( z  e.  NN  |->  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) ) )  ~~>  ( vol
* `  ( ( (,) `  ( G `  j ) )  i^i 
A ) ) )
1421, 70, 74, 128, 141climi2 12081 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  E. a  e.  NN  A. n  e.  ( ZZ>= `  a )
( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
1431rexuz3 11928 . . . . . . . . . . 11  |-  ( 1  e.  ZZ  ->  ( E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) )
1442, 143ax-mp 8 . . . . . . . . . 10  |-  ( E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
145142, 144sylib 188 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  j  e.  ( 1 ... m
) )  ->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a )
( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
146145ralrimiva 2702 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  A. j  e.  ( 1 ... m ) E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
147 fzfi 11126 . . . . . . . . 9  |-  ( 1 ... m )  e. 
Fin
148 rexfiuz 11927 . . . . . . . . 9  |-  ( ( 1 ... m )  e.  Fin  ->  ( E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  A. j  e.  ( 1 ... m ) E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) )
149147, 148ax-mp 8 . . . . . . . 8  |-  ( E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  A. j  e.  ( 1 ... m ) E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
150146, 149sylibr 203 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
1511rexuz3 11928 . . . . . . . 8  |-  ( 1  e.  ZZ  ->  ( E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) )
1522, 151ax-mp 8 . . . . . . 7  |-  ( E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  E. a  e.  ZZ  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
153150, 152sylibr 203 . . . . . 6  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
1541r19.2uz 11931 . . . . . 6  |-  ( E. a  e.  NN  A. n  e.  ( ZZ>= `  a ) A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  ->  E. n  e.  NN  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
155153, 154syl 15 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  E. n  e.  NN  A. j  e.  ( 1 ... m ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
15618adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
15719adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  -> Disj  x  e.  NN ( (,) `  ( F `
 x ) ) )
15822adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  ( vol * `  E )  e.  RR )
1594adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  C  e.  RR+ )
1608adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  G : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
16123adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  E  C_  U. ran  ( (,)  o.  G ) )
16224adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  sup ( ran  T ,  RR* ,  <  )  <_  ( ( vol * `  E )  +  C
) )
163 simprll 738 . . . . . . . . 9  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  m  e.  NN )
164 simprlr 739 . . . . . . . . 9  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C
)
165 eqid 2358 . . . . . . . . 9  |-  U. (
( (,)  o.  G
) " ( 1 ... m ) )  =  U. ( ( (,)  o.  G )
" ( 1 ... m ) )
166 simprrl 740 . . . . . . . . 9  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  n  e.  NN )
167 simprrr 741 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  A. j  e.  ( 1 ... m ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) )
168 fveq2 5608 . . . . . . . . . . . . . . . . . . 19  |-  ( i  =  z  ->  ( F `  i )  =  ( F `  z ) )
169168fveq2d 5612 . . . . . . . . . . . . . . . . . 18  |-  ( i  =  z  ->  ( (,) `  ( F `  i ) )  =  ( (,) `  ( F `  z )
) )
170169ineq1d 3445 . . . . . . . . . . . . . . . . 17  |-  ( i  =  z  ->  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) )  =  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )
171170fveq2d 5612 . . . . . . . . . . . . . . . 16  |-  ( i  =  z  ->  ( vol * `  ( ( (,) `  ( F `
 i ) )  i^i  ( (,) `  ( G `  j )
) ) )  =  ( vol * `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) ) )
172171cbvsumv 12266 . . . . . . . . . . . . . . 15  |-  sum_ i  e.  ( 1 ... n
) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  =  sum_ z  e.  ( 1 ... n ) ( vol * `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )
173 fveq2 5608 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  k  ->  ( G `  j )  =  ( G `  k ) )
174173fveq2d 5612 . . . . . . . . . . . . . . . . . 18  |-  ( j  =  k  ->  ( (,) `  ( G `  j ) )  =  ( (,) `  ( G `  k )
) )
175174ineq2d 3446 . . . . . . . . . . . . . . . . 17  |-  ( j  =  k  ->  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) )  =  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )
176175fveq2d 5612 . . . . . . . . . . . . . . . 16  |-  ( j  =  k  ->  ( vol * `  ( ( (,) `  ( F `
 z ) )  i^i  ( (,) `  ( G `  j )
) ) )  =  ( vol * `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) ) )
177176sumeq2sdv 12274 . . . . . . . . . . . . . . 15  |-  ( j  =  k  ->  sum_ z  e.  ( 1 ... n
) ( vol * `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  j
) ) ) )  =  sum_ z  e.  ( 1 ... n ) ( vol * `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) ) )
178172, 177syl5eq 2402 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  sum_ i  e.  ( 1 ... n
) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  =  sum_ z  e.  ( 1 ... n ) ( vol * `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) ) )
179174ineq1d 3445 . . . . . . . . . . . . . . 15  |-  ( j  =  k  ->  (
( (,) `  ( G `  j )
)  i^i  A )  =  ( ( (,) `  ( G `  k
) )  i^i  A
) )
180179fveq2d 5612 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  ( vol * `  ( ( (,) `  ( G `
 j ) )  i^i  A ) )  =  ( vol * `  ( ( (,) `  ( G `  k )
)  i^i  A )
) )
181178, 180oveq12d 5963 . . . . . . . . . . . . 13  |-  ( j  =  k  ->  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) )  =  (
sum_ z  e.  ( 1 ... n ) ( vol * `  ( ( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  k )
)  i^i  A )
) ) )
182181fveq2d 5612 . . . . . . . . . . . 12  |-  ( j  =  k  ->  ( abs `  ( sum_ i  e.  ( 1 ... n
) ( vol * `  ( ( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  =  ( abs `  ( sum_ z  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  k )
)  i^i  A )
) ) ) )
183182breq1d 4114 . . . . . . . . . . 11  |-  ( j  =  k  ->  (
( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  ( abs `  ( sum_ z  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  k )
)  i^i  A )
) ) )  < 
( C  /  m
) ) )
184183cbvralv 2840 . . . . . . . . . 10  |-  ( A. j  e.  ( 1 ... m ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  <->  A. k  e.  ( 1 ... m ) ( abs `  ( sum_ z  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  k )
)  i^i  A )
) ) )  < 
( C  /  m
) )
185167, 184sylib 188 . . . . . . . . 9  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  A. k  e.  ( 1 ... m ) ( abs `  ( sum_ z  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  z )
)  i^i  ( (,) `  ( G `  k
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  k )
)  i^i  A )
) ) )  < 
( C  /  m
) )
186 eqid 2358 . . . . . . . . 9  |-  U. (
( (,)  o.  F
) " ( 1 ... n ) )  =  U. ( ( (,)  o.  F )
" ( 1 ... n ) )
187156, 157, 20, 21, 158, 159, 160, 161, 6, 162, 163, 164, 165, 166, 185, 186uniioombllem5 19046 . . . . . . . 8  |-  ( (
ph  /\  ( (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
)  /\  ( n  e.  NN  /\  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) ) )  ->  ( ( vol
* `  ( E  i^i  A ) )  +  ( vol * `  ( E  \  A ) ) )  <_  (
( vol * `  E )  +  ( 4  x.  C ) ) )
188187anassrs 629 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  (
n  e.  NN  /\  A. j  e.  ( 1 ... m ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
) ) )  -> 
( ( vol * `  ( E  i^i  A
) )  +  ( vol * `  ( E  \  A ) ) )  <_  ( ( vol * `  E )  +  ( 4  x.  C ) ) )
189188expr 598 . . . . . 6  |-  ( ( ( ph  /\  (
m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C
) )  /\  n  e.  NN )  ->  ( A. j  e.  (
1 ... m ) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  ->  ( ( vol * `  ( E  i^i  A ) )  +  ( vol * `  ( E  \  A
) ) )  <_ 
( ( vol * `  E )  +  ( 4  x.  C ) ) ) )
190189rexlimdva 2743 . . . . 5  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  ( E. n  e.  NN  A. j  e.  ( 1 ... m
) ( abs `  ( sum_ i  e.  ( 1 ... n ) ( vol * `  (
( (,) `  ( F `  i )
)  i^i  ( (,) `  ( G `  j
) ) ) )  -  ( vol * `  ( ( (,) `  ( G `  j )
)  i^i  A )
) ) )  < 
( C  /  m
)  ->  ( ( vol * `  ( E  i^i  A ) )  +  ( vol * `  ( E  \  A
) ) )  <_ 
( ( vol * `  E )  +  ( 4  x.  C ) ) ) )
191155, 190mpd 14 . . . 4  |-  ( (
ph  /\  ( m  e.  NN  /\  ( abs `  ( ( T `  m )  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C ) )  ->  ( ( vol
* `  ( E  i^i  A ) )  +  ( vol * `  ( E  \  A ) ) )  <_  (
( vol * `  E )  +  ( 4  x.  C ) ) )
192191expr 598 . . 3  |-  ( (
ph  /\  m  e.  NN )  ->  ( ( abs `  ( ( T `  m )  -  sup ( ran 
T ,  RR* ,  <  ) ) )  <  C  ->  ( ( vol * `  ( E  i^i  A
) )  +  ( vol * `  ( E  \  A ) ) )  <_  ( ( vol * `  E )  +  ( 4  x.  C ) ) ) )
193192rexlimdva 2743 . 2  |-  ( ph  ->  ( E. m  e.  NN  ( abs `  (
( T `  m
)  -  sup ( ran  T ,  RR* ,  <  ) ) )  <  C  ->  ( ( vol * `  ( E  i^i  A
) )  +  ( vol * `  ( E  \  A ) ) )  <_  ( ( vol * `  E )  +  ( 4  x.  C ) ) ) )
19469, 193mpd 14 1  |-  ( ph  ->  ( ( vol * `  ( E  i^i  A
) )  +  ( vol * `  ( E  \  A ) ) )  <_  ( ( vol * `  E )  +  ( 4  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   A.wral 2619   E.wrex 2620   _Vcvv 2864    \ cdif 3225    i^i cin 3227    C_ wss 3228   (/)c0 3531   ifcif 3641   <.cop 3719   U.cuni 3908  Disj wdisj 4074   class class class wbr 4104    e. cmpt 4158    X. cxp 4769   `'ccnv 4770   dom cdm 4771   ran crn 4772   "cima 4774    o. ccom 4775    Fn wfn 5332   -->wf 5333   ` cfv 5337  (class class class)co 5945   1stc1st 6207   2ndc2nd 6208   Fincfn 6951   supcsup 7283   RRcr 8826   0cc0 8827   1c1 8828    + caddc 8830    x. cmul 8832    +oocpnf 8954   RR*cxr 8956    < clt 8957    <_ cle 8958    - cmin 9127    / cdiv 9513   NNcn 9836   4c4 9887   ZZcz 10116   ZZ>=cuz 10322   RR+crp 10446   (,)cioo 10748   [,)cico 10750   ...cfz 10874    seq cseq 11138   abscabs 11815    ~~> cli 12054   sum_csu 12255   vol *covol 18926
This theorem is referenced by:  uniioombl  19048
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-inf2 7432  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904  ax-pre-sup 8905
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-disj 4075  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-se 4435  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-isom 5346  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-2o 6567  df-oadd 6570  df-er 6747  df-map 6862  df-pm 6863  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-fi 7255  df-sup 7284  df-oi 7315  df-card 7662  df-acn 7665  df-cda 7884  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-div 9514  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-n0 10058  df-z 10117  df-uz 10323  df-q 10409  df-rp 10447  df-xneg 10544  df-xadd 10545  df-xmul 10546  df-ioo 10752  df-ico 10754  df-icc 10755  df-fz 10875  df-fzo 10963  df-fl 11017  df-seq 11139  df-exp 11198  df-hash 11431  df-cj 11680  df-re 11681  df-im 11682  df-sqr 11816  df-abs 11817  df-clim 12058  df-rlim 12059  df-sum 12256  df-rest 13426  df-topgen 13443  df-xmet 16475  df-met 16476  df-bl 16477  df-mopn 16478  df-top 16742  df-bases 16744  df-topon 16745  df-cmp 17220  df-ovol 18928  df-vol 18929
  Copyright terms: Public domain W3C validator