MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unimax Unicode version

Theorem unimax 3861
Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.)
Assertion
Ref Expression
unimax  |-  ( A  e.  B  ->  U. {
x  e.  B  |  x  C_  A }  =  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem unimax
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssid 3197 . . 3  |-  A  C_  A
2 sseq1 3199 . . . 4  |-  ( x  =  A  ->  (
x  C_  A  <->  A  C_  A
) )
32elrab3 2924 . . 3  |-  ( A  e.  B  ->  ( A  e.  { x  e.  B  |  x  C_  A }  <->  A  C_  A
) )
41, 3mpbiri 224 . 2  |-  ( A  e.  B  ->  A  e.  { x  e.  B  |  x  C_  A }
)
5 sseq1 3199 . . . . 5  |-  ( x  =  y  ->  (
x  C_  A  <->  y  C_  A ) )
65elrab 2923 . . . 4  |-  ( y  e.  { x  e.  B  |  x  C_  A }  <->  ( y  e.  B  /\  y  C_  A ) )
76simprbi 450 . . 3  |-  ( y  e.  { x  e.  B  |  x  C_  A }  ->  y  C_  A )
87rgen 2608 . 2  |-  A. y  e.  { x  e.  B  |  x  C_  A }
y  C_  A
9 ssunieq 3860 . . 3  |-  ( ( A  e.  { x  e.  B  |  x  C_  A }  /\  A. y  e.  { x  e.  B  |  x  C_  A } y  C_  A )  ->  A  =  U. { x  e.  B  |  x  C_  A } )
109eqcomd 2288 . 2  |-  ( ( A  e.  { x  e.  B  |  x  C_  A }  /\  A. y  e.  { x  e.  B  |  x  C_  A } y  C_  A )  ->  U. {
x  e.  B  |  x  C_  A }  =  A )
114, 8, 10sylancl 643 1  |-  ( A  e.  B  ->  U. {
x  e.  B  |  x  C_  A }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547    C_ wss 3152   U.cuni 3827
This theorem is referenced by:  lssuni  15697  chsupid  21991  shatomistici  22941  lssats  28575  lpssat  28576  lssatle  28578  lssat  28579
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rab 2552  df-v 2790  df-in 3159  df-ss 3166  df-uni 3828
  Copyright terms: Public domain W3C validator