MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniopel Unicode version

Theorem uniopel 4270
Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opthw.1  |-  A  e. 
_V
opthw.2  |-  B  e. 
_V
Assertion
Ref Expression
uniopel  |-  ( <. A ,  B >.  e.  C  ->  U. <. A ,  B >.  e.  U. C
)

Proof of Theorem uniopel
StepHypRef Expression
1 opthw.1 . . . 4  |-  A  e. 
_V
2 opthw.2 . . . 4  |-  B  e. 
_V
31, 2uniop 4269 . . 3  |-  U. <. A ,  B >.  =  { A ,  B }
41, 2opi2 4241 . . 3  |-  { A ,  B }  e.  <. A ,  B >.
53, 4eqeltri 2353 . 2  |-  U. <. A ,  B >.  e.  <. A ,  B >.
6 elssuni 3855 . . 3  |-  ( <. A ,  B >.  e.  C  ->  <. A ,  B >.  C_  U. C )
76sseld 3179 . 2  |-  ( <. A ,  B >.  e.  C  ->  ( U. <. A ,  B >.  e. 
<. A ,  B >.  ->  U. <. A ,  B >.  e.  U. C ) )
85, 7mpi 16 1  |-  ( <. A ,  B >.  e.  C  ->  U. <. A ,  B >.  e.  U. C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1684   _Vcvv 2788   {cpr 3641   <.cop 3643   U.cuni 3827
This theorem is referenced by:  dmrnssfld  4938  unielrel  5197
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rex 2549  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828
  Copyright terms: Public domain W3C validator