MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniopn Unicode version

Theorem uniopn 16659
Description: The union of a subset of a topology is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
Assertion
Ref Expression
uniopn  |-  ( ( J  e.  Top  /\  A  C_  J )  ->  U. A  e.  J
)

Proof of Theorem uniopn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istopg 16657 . . . . 5  |-  ( J  e.  Top  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) ) )
21ibi 232 . . . 4  |-  ( J  e.  Top  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J
) )
32simpld 445 . . 3  |-  ( J  e.  Top  ->  A. x
( x  C_  J  ->  U. x  e.  J
) )
4 elpw2g 4190 . . . . . . . 8  |-  ( J  e.  Top  ->  ( A  e.  ~P J  <->  A 
C_  J ) )
54biimpar 471 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  J )  ->  A  e.  ~P J
)
6 sseq1 3212 . . . . . . . . 9  |-  ( x  =  A  ->  (
x  C_  J  <->  A  C_  J
) )
7 unieq 3852 . . . . . . . . . 10  |-  ( x  =  A  ->  U. x  =  U. A )
87eleq1d 2362 . . . . . . . . 9  |-  ( x  =  A  ->  ( U. x  e.  J  <->  U. A  e.  J ) )
96, 8imbi12d 311 . . . . . . . 8  |-  ( x  =  A  ->  (
( x  C_  J  ->  U. x  e.  J
)  <->  ( A  C_  J  ->  U. A  e.  J
) ) )
109spcgv 2881 . . . . . . 7  |-  ( A  e.  ~P J  -> 
( A. x ( x  C_  J  ->  U. x  e.  J )  ->  ( A  C_  J  ->  U. A  e.  J
) ) )
115, 10syl 15 . . . . . 6  |-  ( ( J  e.  Top  /\  A  C_  J )  -> 
( A. x ( x  C_  J  ->  U. x  e.  J )  ->  ( A  C_  J  ->  U. A  e.  J
) ) )
1211com23 72 . . . . 5  |-  ( ( J  e.  Top  /\  A  C_  J )  -> 
( A  C_  J  ->  ( A. x ( x  C_  J  ->  U. x  e.  J )  ->  U. A  e.  J
) ) )
1312ex 423 . . . 4  |-  ( J  e.  Top  ->  ( A  C_  J  ->  ( A  C_  J  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  ->  U. A  e.  J ) ) ) )
1413pm2.43d 44 . . 3  |-  ( J  e.  Top  ->  ( A  C_  J  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  ->  U. A  e.  J ) ) )
153, 14mpid 37 . 2  |-  ( J  e.  Top  ->  ( A  C_  J  ->  U. A  e.  J ) )
1615imp 418 1  |-  ( ( J  e.  Top  /\  A  C_  J )  ->  U. A  e.  J
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1530    = wceq 1632    e. wcel 1696   A.wral 2556    i^i cin 3164    C_ wss 3165   ~Pcpw 3638   U.cuni 3843   Topctop 16647
This theorem is referenced by:  iunopn  16660  unopn  16665  0opn  16666  topopn  16668  tgtop  16727  ntropn  16802  toponmre  16846  neips  16866  txcmplem1  17351  unimopn  18058  metrest  18086  cvmscld  23819  toplat  25393  inttop2  25618  qusp  25645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-v 2803  df-in 3172  df-ss 3179  df-pw 3640  df-uni 3844  df-top 16652
  Copyright terms: Public domain W3C validator