Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipreima Structured version   Unicode version

Theorem unipreima 24061
Description: Preimage of a class union. (Contributed by Thierry Arnoux, 7-Feb-2017.)
Assertion
Ref Expression
unipreima  |-  ( Fun 
F  ->  ( `' F " U. A )  =  U_ x  e.  A  ( `' F " x ) )
Distinct variable groups:    x, F    x, A

Proof of Theorem unipreima
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 funfn 5485 . 2  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 r19.42v 2864 . . . . . . 7  |-  ( E. x  e.  A  ( y  e.  dom  F  /\  ( F `  y
)  e.  x )  <-> 
( y  e.  dom  F  /\  E. x  e.  A  ( F `  y )  e.  x
) )
32bicomi 195 . . . . . 6  |-  ( ( y  e.  dom  F  /\  E. x  e.  A  ( F `  y )  e.  x )  <->  E. x  e.  A  ( y  e.  dom  F  /\  ( F `  y )  e.  x ) )
43a1i 11 . . . . 5  |-  ( F  Fn  dom  F  -> 
( ( y  e. 
dom  F  /\  E. x  e.  A  ( F `  y )  e.  x
)  <->  E. x  e.  A  ( y  e.  dom  F  /\  ( F `  y )  e.  x
) ) )
5 eluni2 4021 . . . . . . 7  |-  ( ( F `  y )  e.  U. A  <->  E. x  e.  A  ( F `  y )  e.  x
)
65anbi2i 677 . . . . . 6  |-  ( ( y  e.  dom  F  /\  ( F `  y
)  e.  U. A
)  <->  ( y  e. 
dom  F  /\  E. x  e.  A  ( F `  y )  e.  x
) )
76a1i 11 . . . . 5  |-  ( F  Fn  dom  F  -> 
( ( y  e. 
dom  F  /\  ( F `  y )  e.  U. A )  <->  ( y  e.  dom  F  /\  E. x  e.  A  ( F `  y )  e.  x ) ) )
8 elpreima 5853 . . . . . 6  |-  ( F  Fn  dom  F  -> 
( y  e.  ( `' F " x )  <-> 
( y  e.  dom  F  /\  ( F `  y )  e.  x
) ) )
98rexbidv 2728 . . . . 5  |-  ( F  Fn  dom  F  -> 
( E. x  e.  A  y  e.  ( `' F " x )  <->  E. x  e.  A  ( y  e.  dom  F  /\  ( F `  y )  e.  x
) ) )
104, 7, 93bitr4d 278 . . . 4  |-  ( F  Fn  dom  F  -> 
( ( y  e. 
dom  F  /\  ( F `  y )  e.  U. A )  <->  E. x  e.  A  y  e.  ( `' F " x ) ) )
11 elpreima 5853 . . . 4  |-  ( F  Fn  dom  F  -> 
( y  e.  ( `' F " U. A
)  <->  ( y  e. 
dom  F  /\  ( F `  y )  e.  U. A ) ) )
12 eliun 4099 . . . . 5  |-  ( y  e.  U_ x  e.  A  ( `' F " x )  <->  E. x  e.  A  y  e.  ( `' F " x ) )
1312a1i 11 . . . 4  |-  ( F  Fn  dom  F  -> 
( y  e.  U_ x  e.  A  ( `' F " x )  <->  E. x  e.  A  y  e.  ( `' F " x ) ) )
1410, 11, 133bitr4d 278 . . 3  |-  ( F  Fn  dom  F  -> 
( y  e.  ( `' F " U. A
)  <->  y  e.  U_ x  e.  A  ( `' F " x ) ) )
1514eqrdv 2436 . 2  |-  ( F  Fn  dom  F  -> 
( `' F " U. A )  =  U_ x  e.  A  ( `' F " x ) )
161, 15sylbi 189 1  |-  ( Fun 
F  ->  ( `' F " U. A )  =  U_ x  e.  A  ( `' F " x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   E.wrex 2708   U.cuni 4017   U_ciun 4095   `'ccnv 4880   dom cdm 4881   "cima 4884   Fun wfun 5451    Fn wfn 5452   ` cfv 5457
This theorem is referenced by:  imambfm  24617  dstrvprob  24734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-fv 5465
  Copyright terms: Public domain W3C validator