MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniqs Unicode version

Theorem uniqs 6893
Description: The union of a quotient set. (Contributed by NM, 9-Dec-2008.)
Assertion
Ref Expression
uniqs  |-  ( R  e.  V  ->  U. ( A /. R )  =  ( R " A
) )

Proof of Theorem uniqs
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecexg 6838 . . . . 5  |-  ( R  e.  V  ->  [ x ] R  e.  _V )
21ralrimivw 2726 . . . 4  |-  ( R  e.  V  ->  A. x  e.  A  [ x ] R  e.  _V )
3 dfiun2g 4058 . . . 4  |-  ( A. x  e.  A  [
x ] R  e. 
_V  ->  U_ x  e.  A  [ x ] R  =  U. { y  |  E. x  e.  A  y  =  [ x ] R } )
42, 3syl 16 . . 3  |-  ( R  e.  V  ->  U_ x  e.  A  [ x ] R  =  U. { y  |  E. x  e.  A  y  =  [ x ] R } )
54eqcomd 2385 . 2  |-  ( R  e.  V  ->  U. {
y  |  E. x  e.  A  y  =  [ x ] R }  =  U_ x  e.  A  [ x ] R )
6 df-qs 6840 . . 3  |-  ( A /. R )  =  { y  |  E. x  e.  A  y  =  [ x ] R }
76unieqi 3960 . 2  |-  U. ( A /. R )  = 
U. { y  |  E. x  e.  A  y  =  [ x ] R }
8 df-ec 6836 . . . . 5  |-  [ x ] R  =  ( R " { x }
)
98a1i 11 . . . 4  |-  ( x  e.  A  ->  [ x ] R  =  ( R " { x }
) )
109iuneq2i 4046 . . 3  |-  U_ x  e.  A  [ x ] R  =  U_ x  e.  A  ( R " { x }
)
11 imaiun 5924 . . 3  |-  ( R
" U_ x  e.  A  { x } )  =  U_ x  e.  A  ( R " { x } )
12 iunid 4080 . . . 4  |-  U_ x  e.  A  { x }  =  A
1312imaeq2i 5134 . . 3  |-  ( R
" U_ x  e.  A  { x } )  =  ( R " A )
1410, 11, 133eqtr2ri 2407 . 2  |-  ( R
" A )  = 
U_ x  e.  A  [ x ] R
155, 7, 143eqtr4g 2437 1  |-  ( R  e.  V  ->  U. ( A /. R )  =  ( R " A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717   {cab 2366   A.wral 2642   E.wrex 2643   _Vcvv 2892   {csn 3750   U.cuni 3950   U_ciun 4028   "cima 4814   [cec 6832   /.cqs 6833
This theorem is referenced by:  uniqs2  6895  ecqs  6897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-xp 4817  df-cnv 4819  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-ec 6836  df-qs 6840
  Copyright terms: Public domain W3C validator