Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisnALT Unicode version

Theorem unisnALT 28702
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. The User manually input on a mmj2 Proof Worksheet, without labels, all steps of unisnALT 28702 except 1, 11, 15, 21, and 30. With execution of the mmj2 unification command, mmj2 could find labels for all of steps except for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15, 21, and 30) . mmj2 could not find reference theorems for those five steps because the hypothesis field of each of these steps was empty and none of those steps unifies with a theorem in set.mm. Each of these five steps is a semantic variation of a theorem in set.mm and is 2-step provable. mmj2 does not have the ability to automatically generate the semantic variation in set.mm of a theorem in an mmj2 Proof Worksheet unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis deduction whose hypothesis is a theorem in set.mm which unifies with the theorem in the Proof Worksheet. The stepprover.c program, which invokes mmj2, has this capability. stepprover.c automatically generated steps 1, 11, 15, 21, and 30, labeled all steps, and generated the RPN proof of unisnALT 28702. Roughly speaking, stepprover.c added to the Proof Worksheet a labeled duplicate step of each non-unifying theorem for each label in a text file, labels.txt, containing a list of labels provided by the User. Upon mmj2 unification, stepprover.c identified a label for each of the five theorems which 2-step proves it. For unisnALT 28702, the label list is a list of all 1-hypothesis propositional calculus deductions in set.mm. stepproverp.c is the same as stepprover.c except that it intermittently pauses during execution, allowing the User to observe the changes to a text file caused by the execution of particular statements of the program. (Contributed by Alan Sare, 19-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
unisnALT.1  |-  A  e. 
_V
Assertion
Ref Expression
unisnALT  |-  U. { A }  =  A

Proof of Theorem unisnALT
Dummy variables  x  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3830 . . . . . 6  |-  ( x  e.  U. { A } 
<->  E. q ( x  e.  q  /\  q  e.  { A } ) )
21biimpi 186 . . . . 5  |-  ( x  e.  U. { A }  ->  E. q ( x  e.  q  /\  q  e.  { A } ) )
3 id 19 . . . . . . . . 9  |-  ( ( x  e.  q  /\  q  e.  { A } )  ->  (
x  e.  q  /\  q  e.  { A } ) )
4 simpl 443 . . . . . . . . 9  |-  ( ( x  e.  q  /\  q  e.  { A } )  ->  x  e.  q )
53, 4syl 15 . . . . . . . 8  |-  ( ( x  e.  q  /\  q  e.  { A } )  ->  x  e.  q )
6 simpr 447 . . . . . . . . . 10  |-  ( ( x  e.  q  /\  q  e.  { A } )  ->  q  e.  { A } )
73, 6syl 15 . . . . . . . . 9  |-  ( ( x  e.  q  /\  q  e.  { A } )  ->  q  e.  { A } )
8 elsni 3664 . . . . . . . . 9  |-  ( q  e.  { A }  ->  q  =  A )
97, 8syl 15 . . . . . . . 8  |-  ( ( x  e.  q  /\  q  e.  { A } )  ->  q  =  A )
10 eleq2 2344 . . . . . . . . 9  |-  ( q  =  A  ->  (
x  e.  q  <->  x  e.  A ) )
1110biimpac 472 . . . . . . . 8  |-  ( ( x  e.  q  /\  q  =  A )  ->  x  e.  A )
125, 9, 11syl2anc 642 . . . . . . 7  |-  ( ( x  e.  q  /\  q  e.  { A } )  ->  x  e.  A )
1312ax-gen 1533 . . . . . 6  |-  A. q
( ( x  e.  q  /\  q  e. 
{ A } )  ->  x  e.  A
)
14 19.23v 1832 . . . . . . 7  |-  ( A. q ( ( x  e.  q  /\  q  e.  { A } )  ->  x  e.  A
)  <->  ( E. q
( x  e.  q  /\  q  e.  { A } )  ->  x  e.  A ) )
1514biimpi 186 . . . . . 6  |-  ( A. q ( ( x  e.  q  /\  q  e.  { A } )  ->  x  e.  A
)  ->  ( E. q ( x  e.  q  /\  q  e. 
{ A } )  ->  x  e.  A
) )
1613, 15ax-mp 8 . . . . 5  |-  ( E. q ( x  e.  q  /\  q  e. 
{ A } )  ->  x  e.  A
)
17 pm3.35 570 . . . . 5  |-  ( ( E. q ( x  e.  q  /\  q  e.  { A } )  /\  ( E. q
( x  e.  q  /\  q  e.  { A } )  ->  x  e.  A ) )  ->  x  e.  A )
182, 16, 17sylancl 643 . . . 4  |-  ( x  e.  U. { A }  ->  x  e.  A
)
1918ax-gen 1533 . . 3  |-  A. x
( x  e.  U. { A }  ->  x  e.  A )
20 dfss2 3169 . . . 4  |-  ( U. { A }  C_  A  <->  A. x ( x  e. 
U. { A }  ->  x  e.  A ) )
2120biimpri 197 . . 3  |-  ( A. x ( x  e. 
U. { A }  ->  x  e.  A )  ->  U. { A }  C_  A )
2219, 21ax-mp 8 . 2  |-  U. { A }  C_  A
23 id 19 . . . . 5  |-  ( x  e.  A  ->  x  e.  A )
24 unisnALT.1 . . . . . 6  |-  A  e. 
_V
2524snid 3667 . . . . 5  |-  A  e. 
{ A }
26 elunii 3832 . . . . 5  |-  ( ( x  e.  A  /\  A  e.  { A } )  ->  x  e.  U. { A }
)
2723, 25, 26sylancl 643 . . . 4  |-  ( x  e.  A  ->  x  e.  U. { A }
)
2827ax-gen 1533 . . 3  |-  A. x
( x  e.  A  ->  x  e.  U. { A } )
29 dfss2 3169 . . . 4  |-  ( A 
C_  U. { A }  <->  A. x ( x  e.  A  ->  x  e.  U. { A } ) )
3029biimpri 197 . . 3  |-  ( A. x ( x  e.  A  ->  x  e.  U. { A } )  ->  A  C_  U. { A } )
3128, 30ax-mp 8 . 2  |-  A  C_  U. { A }
3222, 31eqssi 3195 1  |-  U. { A }  =  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684   _Vcvv 2788    C_ wss 3152   {csn 3640   U.cuni 3827
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-in 3159  df-ss 3166  df-sn 3646  df-uni 3828
  Copyright terms: Public domain W3C validator