Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisnALT Unicode version

Theorem unisnALT 29018
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. The User manually input on a mmj2 Proof Worksheet, without labels, all steps of unisnALT 29018 except 1, 11, 15, 21, and 30. With execution of the mmj2 unification command, mmj2 could find labels for all steps except for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15, 21, and 30) . mmj2 could not find reference theorems for those five steps because the hypothesis field of each of these steps was empty and none of those steps unifies with a theorem in set.mm. Each of these five steps is a semantic variation of a theorem in set.mm and is 2-step provable. mmj2 does not have the ability to automatically generate the semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis deduction whose hypothesis is a theorem in set.mm which unifies with the theorem in the Proof Worksheet. The stepprover.c program, which invokes mmj2, has this capability. stepprover.c automatically generated steps 1, 11, 15, 21, and 30, labeled all steps, and generated the RPN proof of unisnALT 29018. Roughly speaking, stepprover.c added to the Proof Worksheet a labeled duplicate step of each non-unifying theorem for each label in a text file, labels.txt, containing a list of labels provided by the User. Upon mmj2 unification, stepprover.c identified a label for each of the five theorems which 2-step proves it. For unisnALT 29018, the label list is a list of all 1-hypothesis propositional calculus deductions in set.mm. stepproverp.c is the same as stepprover.c except that it intermittently pauses during execution, allowing the User to observe the changes to a text file caused by the execution of particular statements of the program. (Contributed by Alan Sare, 19-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
unisnALT.1  |-  A  e. 
_V
Assertion
Ref Expression
unisnALT  |-  U. { A }  =  A

Proof of Theorem unisnALT
Dummy variables  x  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3846 . . . . . 6  |-  ( x  e.  U. { A } 
<->  E. q ( x  e.  q  /\  q  e.  { A } ) )
21biimpi 186 . . . . 5  |-  ( x  e.  U. { A }  ->  E. q ( x  e.  q  /\  q  e.  { A } ) )
3 id 19 . . . . . . . . 9  |-  ( ( x  e.  q  /\  q  e.  { A } )  ->  (
x  e.  q  /\  q  e.  { A } ) )
4 simpl 443 . . . . . . . . 9  |-  ( ( x  e.  q  /\  q  e.  { A } )  ->  x  e.  q )
53, 4syl 15 . . . . . . . 8  |-  ( ( x  e.  q  /\  q  e.  { A } )  ->  x  e.  q )
6 simpr 447 . . . . . . . . . 10  |-  ( ( x  e.  q  /\  q  e.  { A } )  ->  q  e.  { A } )
73, 6syl 15 . . . . . . . . 9  |-  ( ( x  e.  q  /\  q  e.  { A } )  ->  q  e.  { A } )
8 elsni 3677 . . . . . . . . 9  |-  ( q  e.  { A }  ->  q  =  A )
97, 8syl 15 . . . . . . . 8  |-  ( ( x  e.  q  /\  q  e.  { A } )  ->  q  =  A )
10 eleq2 2357 . . . . . . . . 9  |-  ( q  =  A  ->  (
x  e.  q  <->  x  e.  A ) )
1110biimpac 472 . . . . . . . 8  |-  ( ( x  e.  q  /\  q  =  A )  ->  x  e.  A )
125, 9, 11syl2anc 642 . . . . . . 7  |-  ( ( x  e.  q  /\  q  e.  { A } )  ->  x  e.  A )
1312ax-gen 1536 . . . . . 6  |-  A. q
( ( x  e.  q  /\  q  e. 
{ A } )  ->  x  e.  A
)
14 19.23v 1844 . . . . . . 7  |-  ( A. q ( ( x  e.  q  /\  q  e.  { A } )  ->  x  e.  A
)  <->  ( E. q
( x  e.  q  /\  q  e.  { A } )  ->  x  e.  A ) )
1514biimpi 186 . . . . . 6  |-  ( A. q ( ( x  e.  q  /\  q  e.  { A } )  ->  x  e.  A
)  ->  ( E. q ( x  e.  q  /\  q  e. 
{ A } )  ->  x  e.  A
) )
1613, 15ax-mp 8 . . . . 5  |-  ( E. q ( x  e.  q  /\  q  e. 
{ A } )  ->  x  e.  A
)
17 pm3.35 570 . . . . 5  |-  ( ( E. q ( x  e.  q  /\  q  e.  { A } )  /\  ( E. q
( x  e.  q  /\  q  e.  { A } )  ->  x  e.  A ) )  ->  x  e.  A )
182, 16, 17sylancl 643 . . . 4  |-  ( x  e.  U. { A }  ->  x  e.  A
)
1918ax-gen 1536 . . 3  |-  A. x
( x  e.  U. { A }  ->  x  e.  A )
20 dfss2 3182 . . . 4  |-  ( U. { A }  C_  A  <->  A. x ( x  e. 
U. { A }  ->  x  e.  A ) )
2120biimpri 197 . . 3  |-  ( A. x ( x  e. 
U. { A }  ->  x  e.  A )  ->  U. { A }  C_  A )
2219, 21ax-mp 8 . 2  |-  U. { A }  C_  A
23 id 19 . . . . 5  |-  ( x  e.  A  ->  x  e.  A )
24 unisnALT.1 . . . . . 6  |-  A  e. 
_V
2524snid 3680 . . . . 5  |-  A  e. 
{ A }
26 elunii 3848 . . . . 5  |-  ( ( x  e.  A  /\  A  e.  { A } )  ->  x  e.  U. { A }
)
2723, 25, 26sylancl 643 . . . 4  |-  ( x  e.  A  ->  x  e.  U. { A }
)
2827ax-gen 1536 . . 3  |-  A. x
( x  e.  A  ->  x  e.  U. { A } )
29 dfss2 3182 . . . 4  |-  ( A 
C_  U. { A }  <->  A. x ( x  e.  A  ->  x  e.  U. { A } ) )
3029biimpri 197 . . 3  |-  ( A. x ( x  e.  A  ->  x  e.  U. { A } )  ->  A  C_  U. { A } )
3128, 30ax-mp 8 . 2  |-  A  C_  U. { A }
3222, 31eqssi 3208 1  |-  U. { A }  =  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   A.wal 1530   E.wex 1531    = wceq 1632    e. wcel 1696   _Vcvv 2801    C_ wss 3165   {csn 3653   U.cuni 3843
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-in 3172  df-ss 3179  df-sn 3659  df-uni 3844
  Copyright terms: Public domain W3C validator