MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unissi Unicode version

Theorem unissi 3931
Description: Subclass relationship for subclass union. Inference form of uniss 3929. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unissi.1  |-  A  C_  B
Assertion
Ref Expression
unissi  |-  U. A  C_ 
U. B

Proof of Theorem unissi
StepHypRef Expression
1 unissi.1 . 2  |-  A  C_  B
2 uniss 3929 . 2  |-  ( A 
C_  B  ->  U. A  C_ 
U. B )
31, 2ax-mp 8 1  |-  U. A  C_ 
U. B
Colors of variables: wff set class
Syntax hints:    C_ wss 3228   U.cuni 3908
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-v 2866  df-in 3235  df-ss 3242  df-uni 3909
  Copyright terms: Public domain W3C validator