MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unitlinv Structured version   Unicode version

Theorem unitlinv 15774
Description: A unit times its inverse is the identity. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitinvcl.1  |-  U  =  (Unit `  R )
unitinvcl.2  |-  I  =  ( invr `  R
)
unitinvcl.3  |-  .x.  =  ( .r `  R )
unitinvcl.4  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
unitlinv  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( I `  X
)  .x.  X )  =  .1.  )

Proof of Theorem unitlinv
StepHypRef Expression
1 unitinvcl.1 . . . 4  |-  U  =  (Unit `  R )
2 eqid 2435 . . . 4  |-  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
)
31, 2unitgrp 15764 . . 3  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  e.  Grp )
41, 2unitgrpbas 15763 . . . 4  |-  U  =  ( Base `  (
(mulGrp `  R )s  U
) )
5 fvex 5734 . . . . . 6  |-  (Unit `  R )  e.  _V
61, 5eqeltri 2505 . . . . 5  |-  U  e. 
_V
7 eqid 2435 . . . . . . 7  |-  (mulGrp `  R )  =  (mulGrp `  R )
8 unitinvcl.3 . . . . . . 7  |-  .x.  =  ( .r `  R )
97, 8mgpplusg 15644 . . . . . 6  |-  .x.  =  ( +g  `  (mulGrp `  R ) )
102, 9ressplusg 13563 . . . . 5  |-  ( U  e.  _V  ->  .x.  =  ( +g  `  ( (mulGrp `  R )s  U ) ) )
116, 10ax-mp 8 . . . 4  |-  .x.  =  ( +g  `  ( (mulGrp `  R )s  U ) )
12 eqid 2435 . . . 4  |-  ( 0g
`  ( (mulGrp `  R )s  U ) )  =  ( 0g `  (
(mulGrp `  R )s  U
) )
13 unitinvcl.2 . . . . 5  |-  I  =  ( invr `  R
)
141, 2, 13invrfval 15770 . . . 4  |-  I  =  ( inv g `  ( (mulGrp `  R )s  U
) )
154, 11, 12, 14grplinv 14843 . . 3  |-  ( ( ( (mulGrp `  R
)s 
U )  e.  Grp  /\  X  e.  U )  ->  ( ( I `
 X )  .x.  X )  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
163, 15sylan 458 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( I `  X
)  .x.  X )  =  ( 0g `  ( (mulGrp `  R )s  U
) ) )
17 unitinvcl.4 . . . 4  |-  .1.  =  ( 1r `  R )
181, 2, 17unitgrpid 15766 . . 3  |-  ( R  e.  Ring  ->  .1.  =  ( 0g `  ( (mulGrp `  R )s  U ) ) )
1918adantr 452 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  .1.  =  ( 0g `  ( (mulGrp `  R )s  U
) ) )
2016, 19eqtr4d 2470 1  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( I `  X
)  .x.  X )  =  .1.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2948   ` cfv 5446  (class class class)co 6073   ↾s cress 13462   +g cplusg 13521   .rcmulr 13522   0gc0g 13715   Grpcgrp 14677  mulGrpcmgp 15640   Ringcrg 15652   1rcur 15654  Unitcui 15736   invrcinvr 15768
This theorem is referenced by:  dvrcan1  15788  drnginvrl  15846  subrginv  15876  subrgunit  15878  unitrrg  16345  nrginvrcnlem  18718  uc1pmon1p  20066  rhmunitinv  24252  kerunit  24253
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-tpos 6471  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805  df-mgp 15641  df-rng 15655  df-ur 15657  df-oppr 15720  df-dvdsr 15738  df-unit 15739  df-invr 15769
  Copyright terms: Public domain W3C validator