Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixpss Unicode version

Theorem unixpss 4815
 Description: The double class union of a cross product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unixpss

Proof of Theorem unixpss
StepHypRef Expression
1 xpsspw 4813 . . . . 5
2 uniss 3864 . . . . 5
31, 2ax-mp 8 . . . 4
4 unipw 4240 . . . 4
53, 4sseqtri 3223 . . 3
6 uniss 3864 . . 3
75, 6ax-mp 8 . 2
8 unipw 4240 . 2
97, 8sseqtri 3223 1
 Colors of variables: wff set class Syntax hints:   cun 3163   wss 3165  cpw 3638  cuni 3843   cxp 4703 This theorem is referenced by:  relfld  5214  inposet  25381  filnetlem3  26432 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-opab 4094  df-xp 4711
 Copyright terms: Public domain W3C validator