MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unocv Structured version   Unicode version

Theorem unocv 16912
Description: The orthocomplement of a union. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypothesis
Ref Expression
inocv.o  |-  ._|_  =  ( ocv `  W )
Assertion
Ref Expression
unocv  |-  (  ._|_  `  ( A  u.  B
) )  =  ( (  ._|_  `  A )  i^i  (  ._|_  `  B
) )

Proof of Theorem unocv
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 3523 . . . . . . 7  |-  ( ( A  C_  ( Base `  W )  /\  B  C_  ( Base `  W
) )  <->  ( A  u.  B )  C_  ( Base `  W ) )
21bicomi 195 . . . . . 6  |-  ( ( A  u.  B ) 
C_  ( Base `  W
)  <->  ( A  C_  ( Base `  W )  /\  B  C_  ( Base `  W ) ) )
3 ralunb 3530 . . . . . 6  |-  ( A. y  e.  ( A  u.  B ) ( z ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) )  <->  ( A. y  e.  A  (
z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) )  /\  A. y  e.  B  ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) ) )
42, 3anbi12i 680 . . . . 5  |-  ( ( ( A  u.  B
)  C_  ( Base `  W )  /\  A. y  e.  ( A  u.  B ) ( z ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) )  <-> 
( ( A  C_  ( Base `  W )  /\  B  C_  ( Base `  W ) )  /\  ( A. y  e.  A  ( z ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
)  /\  A. y  e.  B  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) ) )
5 an4 799 . . . . 5  |-  ( ( ( A  C_  ( Base `  W )  /\  B  C_  ( Base `  W
) )  /\  ( A. y  e.  A  ( z ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
)  /\  A. y  e.  B  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) )  <->  ( ( A 
C_  ( Base `  W
)  /\  A. y  e.  A  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) )  /\  ( B  C_  ( Base `  W )  /\  A. y  e.  B  ( z ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) ) ) )
64, 5bitri 242 . . . 4  |-  ( ( ( A  u.  B
)  C_  ( Base `  W )  /\  A. y  e.  ( A  u.  B ) ( z ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) )  <-> 
( ( A  C_  ( Base `  W )  /\  A. y  e.  A  ( z ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) )  /\  ( B  C_  ( Base `  W
)  /\  A. y  e.  B  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) ) )
76anbi2i 677 . . 3  |-  ( ( z  e.  ( Base `  W )  /\  (
( A  u.  B
)  C_  ( Base `  W )  /\  A. y  e.  ( A  u.  B ) ( z ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) )  <->  ( z  e.  ( Base `  W
)  /\  ( ( A  C_  ( Base `  W
)  /\  A. y  e.  A  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) )  /\  ( B  C_  ( Base `  W )  /\  A. y  e.  B  ( z ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) ) ) ) )
8 eqid 2438 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
9 eqid 2438 . . . . 5  |-  ( .i
`  W )  =  ( .i `  W
)
10 eqid 2438 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
11 eqid 2438 . . . . 5  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
12 inocv.o . . . . 5  |-  ._|_  =  ( ocv `  W )
138, 9, 10, 11, 12elocv 16900 . . . 4  |-  ( z  e.  (  ._|_  `  ( A  u.  B )
)  <->  ( ( A  u.  B )  C_  ( Base `  W )  /\  z  e.  ( Base `  W )  /\  A. y  e.  ( A  u.  B ) ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) ) )
14 3anan12 950 . . . 4  |-  ( ( ( A  u.  B
)  C_  ( Base `  W )  /\  z  e.  ( Base `  W
)  /\  A. y  e.  ( A  u.  B
) ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) )  <-> 
( z  e.  (
Base `  W )  /\  ( ( A  u.  B )  C_  ( Base `  W )  /\  A. y  e.  ( A  u.  B ) ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) ) ) )
1513, 14bitri 242 . . 3  |-  ( z  e.  (  ._|_  `  ( A  u.  B )
)  <->  ( z  e.  ( Base `  W
)  /\  ( ( A  u.  B )  C_  ( Base `  W
)  /\  A. y  e.  ( A  u.  B
) ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) ) ) )
168, 9, 10, 11, 12elocv 16900 . . . . . 6  |-  ( z  e.  (  ._|_  `  A
)  <->  ( A  C_  ( Base `  W )  /\  z  e.  ( Base `  W )  /\  A. y  e.  A  ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) ) )
17 3anan12 950 . . . . . 6  |-  ( ( A  C_  ( Base `  W )  /\  z  e.  ( Base `  W
)  /\  A. y  e.  A  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) )  <-> 
( z  e.  (
Base `  W )  /\  ( A  C_  ( Base `  W )  /\  A. y  e.  A  ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) ) ) )
1816, 17bitri 242 . . . . 5  |-  ( z  e.  (  ._|_  `  A
)  <->  ( z  e.  ( Base `  W
)  /\  ( A  C_  ( Base `  W
)  /\  A. y  e.  A  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) ) )
198, 9, 10, 11, 12elocv 16900 . . . . . 6  |-  ( z  e.  (  ._|_  `  B
)  <->  ( B  C_  ( Base `  W )  /\  z  e.  ( Base `  W )  /\  A. y  e.  B  ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) ) )
20 3anan12 950 . . . . . 6  |-  ( ( B  C_  ( Base `  W )  /\  z  e.  ( Base `  W
)  /\  A. y  e.  B  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) )  <-> 
( z  e.  (
Base `  W )  /\  ( B  C_  ( Base `  W )  /\  A. y  e.  B  ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) ) ) )
2119, 20bitri 242 . . . . 5  |-  ( z  e.  (  ._|_  `  B
)  <->  ( z  e.  ( Base `  W
)  /\  ( B  C_  ( Base `  W
)  /\  A. y  e.  B  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) ) )
2218, 21anbi12i 680 . . . 4  |-  ( ( z  e.  (  ._|_  `  A )  /\  z  e.  (  ._|_  `  B
) )  <->  ( (
z  e.  ( Base `  W )  /\  ( A  C_  ( Base `  W
)  /\  A. y  e.  A  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) )  /\  ( z  e.  ( Base `  W
)  /\  ( B  C_  ( Base `  W
)  /\  A. y  e.  B  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) ) ) )
23 elin 3532 . . . 4  |-  ( z  e.  ( (  ._|_  `  A )  i^i  (  ._|_  `  B ) )  <-> 
( z  e.  ( 
._|_  `  A )  /\  z  e.  (  ._|_  `  B ) ) )
24 anandi 803 . . . 4  |-  ( ( z  e.  ( Base `  W )  /\  (
( A  C_  ( Base `  W )  /\  A. y  e.  A  ( z ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) )  /\  ( B 
C_  ( Base `  W
)  /\  A. y  e.  B  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) ) )  <->  ( (
z  e.  ( Base `  W )  /\  ( A  C_  ( Base `  W
)  /\  A. y  e.  A  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) )  /\  ( z  e.  ( Base `  W
)  /\  ( B  C_  ( Base `  W
)  /\  A. y  e.  B  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) ) ) )
2522, 23, 243bitr4i 270 . . 3  |-  ( z  e.  ( (  ._|_  `  A )  i^i  (  ._|_  `  B ) )  <-> 
( z  e.  (
Base `  W )  /\  ( ( A  C_  ( Base `  W )  /\  A. y  e.  A  ( z ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) )  /\  ( B  C_  ( Base `  W
)  /\  A. y  e.  B  ( z
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) ) ) ) )
267, 15, 253bitr4i 270 . 2  |-  ( z  e.  (  ._|_  `  ( A  u.  B )
)  <->  z  e.  ( (  ._|_  `  A )  i^i  (  ._|_  `  B
) ) )
2726eqriv 2435 1  |-  (  ._|_  `  ( A  u.  B
) )  =  ( (  ._|_  `  A )  i^i  (  ._|_  `  B
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707    u. cun 3320    i^i cin 3321    C_ wss 3322   ` cfv 5457  (class class class)co 6084   Basecbs 13474  Scalarcsca 13537   .icip 13539   0gc0g 13728   ocvcocv 16892
This theorem is referenced by:  cssincl  16920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-fv 5465  df-ov 6087  df-ocv 16895
  Copyright terms: Public domain W3C validator