HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unopf1o Unicode version

Theorem unopf1o 22496
Description: A unitary operator in Hilbert space is one-to-one and onto. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unopf1o  |-  ( T  e.  UniOp  ->  T : ~H
-1-1-onto-> ~H )

Proof of Theorem unopf1o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elunop 22452 . . . . 5  |-  ( T  e.  UniOp 
<->  ( T : ~H -onto-> ~H  /\  A. x  e. 
~H  A. y  e.  ~H  ( ( T `  x )  .ih  ( T `  y )
)  =  ( x 
.ih  y ) ) )
21simplbi 446 . . . 4  |-  ( T  e.  UniOp  ->  T : ~H -onto-> ~H )
3 fof 5451 . . . 4  |-  ( T : ~H -onto-> ~H  ->  T : ~H --> ~H )
42, 3syl 15 . . 3  |-  ( T  e.  UniOp  ->  T : ~H
--> ~H )
5 unop 22495 . . . . . . . . . . . . 13  |-  ( ( T  e.  UniOp  /\  x  e.  ~H  /\  x  e. 
~H )  ->  (
( T `  x
)  .ih  ( T `  x ) )  =  ( x  .ih  x
) )
653anidm23 1241 . . . . . . . . . . . 12  |-  ( ( T  e.  UniOp  /\  x  e.  ~H )  ->  (
( T `  x
)  .ih  ( T `  x ) )  =  ( x  .ih  x
) )
763adant3 975 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  x  e.  ~H  /\  y  e. 
~H )  ->  (
( T `  x
)  .ih  ( T `  x ) )  =  ( x  .ih  x
) )
8 unop 22495 . . . . . . . . . . . . 13  |-  ( ( T  e.  UniOp  /\  y  e.  ~H  /\  y  e. 
~H )  ->  (
( T `  y
)  .ih  ( T `  y ) )  =  ( y  .ih  y
) )
983anidm23 1241 . . . . . . . . . . . 12  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  (
( T `  y
)  .ih  ( T `  y ) )  =  ( y  .ih  y
) )
1093adant2 974 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  x  e.  ~H  /\  y  e. 
~H )  ->  (
( T `  y
)  .ih  ( T `  y ) )  =  ( y  .ih  y
) )
117, 10oveq12d 5876 . . . . . . . . . 10  |-  ( ( T  e.  UniOp  /\  x  e.  ~H  /\  y  e. 
~H )  ->  (
( ( T `  x )  .ih  ( T `  x )
)  +  ( ( T `  y ) 
.ih  ( T `  y ) ) )  =  ( ( x 
.ih  x )  +  ( y  .ih  y
) ) )
12 unop 22495 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  x  e.  ~H  /\  y  e. 
~H )  ->  (
( T `  x
)  .ih  ( T `  y ) )  =  ( x  .ih  y
) )
13 unop 22495 . . . . . . . . . . . 12  |-  ( ( T  e.  UniOp  /\  y  e.  ~H  /\  x  e. 
~H )  ->  (
( T `  y
)  .ih  ( T `  x ) )  =  ( y  .ih  x
) )
14133com23 1157 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  x  e.  ~H  /\  y  e. 
~H )  ->  (
( T `  y
)  .ih  ( T `  x ) )  =  ( y  .ih  x
) )
1512, 14oveq12d 5876 . . . . . . . . . 10  |-  ( ( T  e.  UniOp  /\  x  e.  ~H  /\  y  e. 
~H )  ->  (
( ( T `  x )  .ih  ( T `  y )
)  +  ( ( T `  y ) 
.ih  ( T `  x ) ) )  =  ( ( x 
.ih  y )  +  ( y  .ih  x
) ) )
1611, 15oveq12d 5876 . . . . . . . . 9  |-  ( ( T  e.  UniOp  /\  x  e.  ~H  /\  y  e. 
~H )  ->  (
( ( ( T `
 x )  .ih  ( T `  x ) )  +  ( ( T `  y ) 
.ih  ( T `  y ) ) )  -  ( ( ( T `  x ) 
.ih  ( T `  y ) )  +  ( ( T `  y )  .ih  ( T `  x )
) ) )  =  ( ( ( x 
.ih  x )  +  ( y  .ih  y
) )  -  (
( x  .ih  y
)  +  ( y 
.ih  x ) ) ) )
17163expb 1152 . . . . . . . 8  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( ( T `  x )  .ih  ( T `  x )
)  +  ( ( T `  y ) 
.ih  ( T `  y ) ) )  -  ( ( ( T `  x ) 
.ih  ( T `  y ) )  +  ( ( T `  y )  .ih  ( T `  x )
) ) )  =  ( ( ( x 
.ih  x )  +  ( y  .ih  y
) )  -  (
( x  .ih  y
)  +  ( y 
.ih  x ) ) ) )
18 ffvelrn 5663 . . . . . . . . . . 11  |-  ( ( T : ~H --> ~H  /\  x  e.  ~H )  ->  ( T `  x
)  e.  ~H )
19 ffvelrn 5663 . . . . . . . . . . 11  |-  ( ( T : ~H --> ~H  /\  y  e.  ~H )  ->  ( T `  y
)  e.  ~H )
2018, 19anim12dan 810 . . . . . . . . . 10  |-  ( ( T : ~H --> ~H  /\  ( x  e.  ~H  /\  y  e.  ~H )
)  ->  ( ( T `  x )  e.  ~H  /\  ( T `
 y )  e. 
~H ) )
214, 20sylan 457 . . . . . . . . 9  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( ( T `  x )  e.  ~H  /\  ( T `
 y )  e. 
~H ) )
22 normlem9at 21700 . . . . . . . . 9  |-  ( ( ( T `  x
)  e.  ~H  /\  ( T `  y )  e.  ~H )  -> 
( ( ( T `
 x )  -h  ( T `  y
) )  .ih  (
( T `  x
)  -h  ( T `
 y ) ) )  =  ( ( ( ( T `  x )  .ih  ( T `  x )
)  +  ( ( T `  y ) 
.ih  ( T `  y ) ) )  -  ( ( ( T `  x ) 
.ih  ( T `  y ) )  +  ( ( T `  y )  .ih  ( T `  x )
) ) ) )
2321, 22syl 15 . . . . . . . 8  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( T `  x
)  -h  ( T `
 y ) ) 
.ih  ( ( T `
 x )  -h  ( T `  y
) ) )  =  ( ( ( ( T `  x ) 
.ih  ( T `  x ) )  +  ( ( T `  y )  .ih  ( T `  y )
) )  -  (
( ( T `  x )  .ih  ( T `  y )
)  +  ( ( T `  y ) 
.ih  ( T `  x ) ) ) ) )
24 normlem9at 21700 . . . . . . . . 9  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( x  -h  y )  .ih  (
x  -h  y ) )  =  ( ( ( x  .ih  x
)  +  ( y 
.ih  y ) )  -  ( ( x 
.ih  y )  +  ( y  .ih  x
) ) ) )
2524adantl 452 . . . . . . . 8  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
x  -h  y ) 
.ih  ( x  -h  y ) )  =  ( ( ( x 
.ih  x )  +  ( y  .ih  y
) )  -  (
( x  .ih  y
)  +  ( y 
.ih  x ) ) ) )
2617, 23, 253eqtr4rd 2326 . . . . . . 7  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
x  -h  y ) 
.ih  ( x  -h  y ) )  =  ( ( ( T `
 x )  -h  ( T `  y
) )  .ih  (
( T `  x
)  -h  ( T `
 y ) ) ) )
2726eqeq1d 2291 . . . . . 6  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( x  -h  y
)  .ih  ( x  -h  y ) )  =  0  <->  ( ( ( T `  x )  -h  ( T `  y ) )  .ih  ( ( T `  x )  -h  ( T `  y )
) )  =  0 ) )
28 hvsubcl 21597 . . . . . . . . 9  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  -h  y
)  e.  ~H )
29 his6 21678 . . . . . . . . 9  |-  ( ( x  -h  y )  e.  ~H  ->  (
( ( x  -h  y )  .ih  (
x  -h  y ) )  =  0  <->  (
x  -h  y )  =  0h ) )
3028, 29syl 15 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( x  -h  y )  .ih  ( x  -h  y
) )  =  0  <-> 
( x  -h  y
)  =  0h )
)
31 hvsubeq0 21647 . . . . . . . 8  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( x  -h  y )  =  0h  <->  x  =  y ) )
3230, 31bitrd 244 . . . . . . 7  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( x  -h  y )  .ih  ( x  -h  y
) )  =  0  <-> 
x  =  y ) )
3332adantl 452 . . . . . 6  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( x  -h  y
)  .ih  ( x  -h  y ) )  =  0  <->  x  =  y
) )
34 hvsubcl 21597 . . . . . . . . 9  |-  ( ( ( T `  x
)  e.  ~H  /\  ( T `  y )  e.  ~H )  -> 
( ( T `  x )  -h  ( T `  y )
)  e.  ~H )
35 his6 21678 . . . . . . . . 9  |-  ( ( ( T `  x
)  -h  ( T `
 y ) )  e.  ~H  ->  (
( ( ( T `
 x )  -h  ( T `  y
) )  .ih  (
( T `  x
)  -h  ( T `
 y ) ) )  =  0  <->  (
( T `  x
)  -h  ( T `
 y ) )  =  0h ) )
3634, 35syl 15 . . . . . . . 8  |-  ( ( ( T `  x
)  e.  ~H  /\  ( T `  y )  e.  ~H )  -> 
( ( ( ( T `  x )  -h  ( T `  y ) )  .ih  ( ( T `  x )  -h  ( T `  y )
) )  =  0  <-> 
( ( T `  x )  -h  ( T `  y )
)  =  0h )
)
37 hvsubeq0 21647 . . . . . . . 8  |-  ( ( ( T `  x
)  e.  ~H  /\  ( T `  y )  e.  ~H )  -> 
( ( ( T `
 x )  -h  ( T `  y
) )  =  0h  <->  ( T `  x )  =  ( T `  y ) ) )
3836, 37bitrd 244 . . . . . . 7  |-  ( ( ( T `  x
)  e.  ~H  /\  ( T `  y )  e.  ~H )  -> 
( ( ( ( T `  x )  -h  ( T `  y ) )  .ih  ( ( T `  x )  -h  ( T `  y )
) )  =  0  <-> 
( T `  x
)  =  ( T `
 y ) ) )
3921, 38syl 15 . . . . . 6  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( (
( ( T `  x )  -h  ( T `  y )
)  .ih  ( ( T `  x )  -h  ( T `  y
) ) )  =  0  <->  ( T `  x )  =  ( T `  y ) ) )
4027, 33, 393bitr3rd 275 . . . . 5  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( ( T `  x )  =  ( T `  y )  <->  x  =  y ) )
4140biimpd 198 . . . 4  |-  ( ( T  e.  UniOp  /\  (
x  e.  ~H  /\  y  e.  ~H )
)  ->  ( ( T `  x )  =  ( T `  y )  ->  x  =  y ) )
4241ralrimivva 2635 . . 3  |-  ( T  e.  UniOp  ->  A. x  e.  ~H  A. y  e. 
~H  ( ( T `
 x )  =  ( T `  y
)  ->  x  =  y ) )
43 dff13 5783 . . 3  |-  ( T : ~H -1-1-> ~H  <->  ( T : ~H --> ~H  /\  A. x  e.  ~H  A. y  e. 
~H  ( ( T `
 x )  =  ( T `  y
)  ->  x  =  y ) ) )
444, 42, 43sylanbrc 645 . 2  |-  ( T  e.  UniOp  ->  T : ~H
-1-1-> ~H )
45 df-f1o 5262 . 2  |-  ( T : ~H -1-1-onto-> ~H  <->  ( T : ~H
-1-1-> ~H  /\  T : ~H -onto-> ~H ) )
4644, 2, 45sylanbrc 645 1  |-  ( T  e.  UniOp  ->  T : ~H
-1-1-onto-> ~H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   -->wf 5251   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   0cc0 8737    + caddc 8740    - cmin 9037   ~Hchil 21499    .ih csp 21502   0hc0v 21504    -h cmv 21505   UniOpcuo 21529
This theorem is referenced by:  unopnorm  22497  cnvunop  22498  unopadj  22499  unoplin  22500  counop  22501  unopbd  22595
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-hilex 21579  ax-hfvadd 21580  ax-hvcom 21581  ax-hvass 21582  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvdistr2 21589  ax-hvmul0 21590  ax-hfi 21658  ax-his1 21661  ax-his2 21662  ax-his3 21663  ax-his4 21664
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-2 9804  df-cj 11584  df-re 11585  df-im 11586  df-hvsub 21551  df-unop 22423
  Copyright terms: Public domain W3C validator