Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unopnOLD Unicode version

Theorem unopnOLD 26464
Description: The union of two open sets is open. (Moved to unopn 16649 in main set.mm and may be deleted by mathbox owner, JM. --NM 15-Oct-2012.) (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unopnOLD  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  u.  B
)  e.  J )

Proof of Theorem unopnOLD
StepHypRef Expression
1 unopn 16649 1  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  u.  B
)  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    e. wcel 1684    u. cun 3150   Topctop 16631
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-v 2790  df-un 3157  df-in 3159  df-ss 3166  df-pw 3627  df-sn 3646  df-pr 3647  df-uni 3828  df-top 16636
  Copyright terms: Public domain W3C validator