MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unss1 Unicode version

Theorem unss1 3344
Description: Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
unss1  |-  ( A 
C_  B  ->  ( A  u.  C )  C_  ( B  u.  C
) )

Proof of Theorem unss1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssel 3174 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21orim1d 812 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  \/  x  e.  C
)  ->  ( x  e.  B  \/  x  e.  C ) ) )
3 elun 3316 . . 3  |-  ( x  e.  ( A  u.  C )  <->  ( x  e.  A  \/  x  e.  C ) )
4 elun 3316 . . 3  |-  ( x  e.  ( B  u.  C )  <->  ( x  e.  B  \/  x  e.  C ) )
52, 3, 43imtr4g 261 . 2  |-  ( A 
C_  B  ->  (
x  e.  ( A  u.  C )  ->  x  e.  ( B  u.  C ) ) )
65ssrdv 3185 1  |-  ( A 
C_  B  ->  ( A  u.  C )  C_  ( B  u.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    e. wcel 1684    u. cun 3150    C_ wss 3152
This theorem is referenced by:  unss2  3346  unss12  3347  eldifpw  4566  tposss  6235  dftpos4  6253  hashbclem  11390  incexclem  12295  mreexexlem2d  13547  catcoppccl  13940  restntr  16912  leordtval2  16942  cmpcld  17129  uniioombllem3  18940  limcres  19236  plyss  19581  shlej1  21939  orderseqlem  24252  pclfinclN  30139
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-un 3157  df-in 3159  df-ss 3166
  Copyright terms: Public domain W3C validator