MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unss12 Unicode version

Theorem unss12 3347
Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.)
Assertion
Ref Expression
unss12  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( A  u.  C
)  C_  ( B  u.  D ) )

Proof of Theorem unss12
StepHypRef Expression
1 unss1 3344 . 2  |-  ( A 
C_  B  ->  ( A  u.  C )  C_  ( B  u.  C
) )
2 unss2 3346 . 2  |-  ( C 
C_  D  ->  ( B  u.  C )  C_  ( B  u.  D
) )
31, 2sylan9ss 3192 1  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( A  u.  C
)  C_  ( B  u.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    u. cun 3150    C_ wss 3152
This theorem is referenced by:  pwssun  4299  fun  5405  undom  6950  finsschain  7162  dprd2da  15277  dmdprdsplit2lem  15280  lspun  15744  spanuni  22123  sshhococi  22125  trunitr  24521  mvdco  26800  dochdmj1  30953
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-un 3157  df-in 3159  df-ss 3166
  Copyright terms: Public domain W3C validator