Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unttr Unicode version

Theorem unttr 25017
Description: It's true that  ph is true until true is true. (Contributed by FL, 27-Feb-2011.) (Proof shortened by Mario Carneiro, 30-Aug-2016.)
Assertion
Ref Expression
unttr  |-  ( ph  until  T.  )

Proof of Theorem unttr
StepHypRef Expression
1 imunt 24997 . 2  |-  (  T. 
->  ( ph  until  T.  )
)
21trud 1314 1  |-  ( ph  until  T.  )
Colors of variables: wff set class
Syntax hints:    T. wtru 1307    until wunt 24973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-ltl5 24993
This theorem depends on definitions:  df-bi 177  df-or 359  df-tru 1310
  Copyright terms: Public domain W3C validator