MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unundi Structured version   Unicode version

Theorem unundi 3508
Description: Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
unundi  |-  ( A  u.  ( B  u.  C ) )  =  ( ( A  u.  B )  u.  ( A  u.  C )
)

Proof of Theorem unundi
StepHypRef Expression
1 unidm 3490 . . 3  |-  ( A  u.  A )  =  A
21uneq1i 3497 . 2  |-  ( ( A  u.  A )  u.  ( B  u.  C ) )  =  ( A  u.  ( B  u.  C )
)
3 un4 3507 . 2  |-  ( ( A  u.  A )  u.  ( B  u.  C ) )  =  ( ( A  u.  B )  u.  ( A  u.  C )
)
42, 3eqtr3i 2458 1  |-  ( A  u.  ( B  u.  C ) )  =  ( ( A  u.  B )  u.  ( A  u.  C )
)
Colors of variables: wff set class
Syntax hints:    = wceq 1652    u. cun 3318
This theorem is referenced by:  dfif5  3751
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-un 3325
  Copyright terms: Public domain W3C validator