MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unwdomg Unicode version

Theorem unwdomg 7314
Description: Weak dominance of a (disjoint) union. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
unwdomg  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D
)  =  (/) )  -> 
( A  u.  C
)  ~<_*  ( B  u.  D
) )

Proof of Theorem unwdomg
Dummy variables  a 
b  f  g  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brwdom3i 7313 . . 3  |-  ( A  ~<_*  B  ->  E. f A. a  e.  A  E. b  e.  B  a  =  ( f `  b
) )
213ad2ant1 976 . 2  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D
)  =  (/) )  ->  E. f A. a  e.  A  E. b  e.  B  a  =  ( f `  b ) )
3 brwdom3i 7313 . . . . . . 7  |-  ( C  ~<_*  D  ->  E. g A. a  e.  C  E. b  e.  D  a  =  ( g `  b
) )
433ad2ant2 977 . . . . . 6  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D
)  =  (/) )  ->  E. g A. a  e.  C  E. b  e.  D  a  =  ( g `  b ) )
54adantr 451 . . . . 5  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D
)  =  (/) )  /\  A. a  e.  A  E. b  e.  B  a  =  ( f `  b ) )  ->  E. g A. a  e.  C  E. b  e.  D  a  =  ( g `  b ) )
6 relwdom 7296 . . . . . . . . . . . 12  |-  Rel  ~<_*
76brrelexi 4745 . . . . . . . . . . 11  |-  ( A  ~<_*  B  ->  A  e.  _V )
86brrelexi 4745 . . . . . . . . . . 11  |-  ( C  ~<_*  D  ->  C  e.  _V )
9 unexg 4537 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  C  e.  _V )  ->  ( A  u.  C
)  e.  _V )
107, 8, 9syl2an 463 . . . . . . . . . 10  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  ( A  u.  C )  e.  _V )
11103adant3 975 . . . . . . . . 9  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D
)  =  (/) )  -> 
( A  u.  C
)  e.  _V )
1211adantr 451 . . . . . . . 8  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D
)  =  (/) )  /\  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. a  e.  C  E. b  e.  D  a  =  ( g `  b ) ) )  ->  ( A  u.  C )  e.  _V )
136brrelex2i 4746 . . . . . . . . . . 11  |-  ( A  ~<_*  B  ->  B  e.  _V )
146brrelex2i 4746 . . . . . . . . . . 11  |-  ( C  ~<_*  D  ->  D  e.  _V )
15 unexg 4537 . . . . . . . . . . 11  |-  ( ( B  e.  _V  /\  D  e.  _V )  ->  ( B  u.  D
)  e.  _V )
1613, 14, 15syl2an 463 . . . . . . . . . 10  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D
)  ->  ( B  u.  D )  e.  _V )
17163adant3 975 . . . . . . . . 9  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D
)  =  (/) )  -> 
( B  u.  D
)  e.  _V )
1817adantr 451 . . . . . . . 8  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D
)  =  (/) )  /\  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. a  e.  C  E. b  e.  D  a  =  ( g `  b ) ) )  ->  ( B  u.  D )  e.  _V )
19 elun 3329 . . . . . . . . . . . 12  |-  ( y  e.  ( A  u.  C )  <->  ( y  e.  A  \/  y  e.  C ) )
20 eqeq1 2302 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  y  ->  (
a  =  ( f `
 b )  <->  y  =  ( f `  b
) ) )
2120rexbidv 2577 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  y  ->  ( E. b  e.  B  a  =  ( f `  b )  <->  E. b  e.  B  y  =  ( f `  b
) ) )
2221rspcva 2895 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  A  /\  A. a  e.  A  E. b  e.  B  a  =  ( f `  b ) )  ->  E. b  e.  B  y  =  ( f `  b ) )
23 fveq2 5541 . . . . . . . . . . . . . . . . . . . 20  |-  ( b  =  z  ->  (
f `  b )  =  ( f `  z ) )
2423eqeq2d 2307 . . . . . . . . . . . . . . . . . . 19  |-  ( b  =  z  ->  (
y  =  ( f `
 b )  <->  y  =  ( f `  z
) ) )
2524cbvrexv 2778 . . . . . . . . . . . . . . . . . 18  |-  ( E. b  e.  B  y  =  ( f `  b )  <->  E. z  e.  B  y  =  ( f `  z
) )
26 ssun1 3351 . . . . . . . . . . . . . . . . . . 19  |-  B  C_  ( B  u.  D
)
27 iftrue 3584 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  B  ->  if ( z  e.  B ,  f ,  g )  =  f )
2827fveq1d 5543 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  B  ->  ( if ( z  e.  B ,  f ,  g ) `  z )  =  ( f `  z ) )
2928eqeq2d 2307 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  B  ->  (
y  =  ( if ( z  e.  B ,  f ,  g ) `  z )  <-> 
y  =  ( f `
 z ) ) )
3029biimprd 214 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  B  ->  (
y  =  ( f `
 z )  -> 
y  =  ( if ( z  e.  B ,  f ,  g ) `  z ) ) )
3130reximia 2661 . . . . . . . . . . . . . . . . . . 19  |-  ( E. z  e.  B  y  =  ( f `  z )  ->  E. z  e.  B  y  =  ( if ( z  e.  B ,  f ,  g ) `  z
) )
32 ssrexv 3251 . . . . . . . . . . . . . . . . . . 19  |-  ( B 
C_  ( B  u.  D )  ->  ( E. z  e.  B  y  =  ( if ( z  e.  B ,  f ,  g ) `  z )  ->  E. z  e.  ( B  u.  D ) y  =  ( if ( z  e.  B ,  f ,  g ) `  z ) ) )
3326, 31, 32mpsyl 59 . . . . . . . . . . . . . . . . . 18  |-  ( E. z  e.  B  y  =  ( f `  z )  ->  E. z  e.  ( B  u.  D
) y  =  ( if ( z  e.  B ,  f ,  g ) `  z
) )
3425, 33sylbi 187 . . . . . . . . . . . . . . . . 17  |-  ( E. b  e.  B  y  =  ( f `  b )  ->  E. z  e.  ( B  u.  D
) y  =  ( if ( z  e.  B ,  f ,  g ) `  z
) )
3522, 34syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  A  /\  A. a  e.  A  E. b  e.  B  a  =  ( f `  b ) )  ->  E. z  e.  ( B  u.  D )
y  =  ( if ( z  e.  B ,  f ,  g ) `  z ) )
3635ancoms 439 . . . . . . . . . . . . . . 15  |-  ( ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  y  e.  A )  ->  E. z  e.  ( B  u.  D
) y  =  ( if ( z  e.  B ,  f ,  g ) `  z
) )
3736adantlr 695 . . . . . . . . . . . . . 14  |-  ( ( ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. a  e.  C  E. b  e.  D  a  =  ( g `  b ) )  /\  y  e.  A )  ->  E. z  e.  ( B  u.  D
) y  =  ( if ( z  e.  B ,  f ,  g ) `  z
) )
3837adantll 694 . . . . . . . . . . . . 13  |-  ( ( ( ( B  i^i  D )  =  (/)  /\  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. a  e.  C  E. b  e.  D  a  =  ( g `  b ) ) )  /\  y  e.  A
)  ->  E. z  e.  ( B  u.  D
) y  =  ( if ( z  e.  B ,  f ,  g ) `  z
) )
39 eqeq1 2302 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  =  y  ->  (
a  =  ( g `
 b )  <->  y  =  ( g `  b
) ) )
4039rexbidv 2577 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  y  ->  ( E. b  e.  D  a  =  ( g `  b )  <->  E. b  e.  D  y  =  ( g `  b
) ) )
41 fveq2 5541 . . . . . . . . . . . . . . . . . . . . 21  |-  ( b  =  z  ->  (
g `  b )  =  ( g `  z ) )
4241eqeq2d 2307 . . . . . . . . . . . . . . . . . . . 20  |-  ( b  =  z  ->  (
y  =  ( g `
 b )  <->  y  =  ( g `  z
) ) )
4342cbvrexv 2778 . . . . . . . . . . . . . . . . . . 19  |-  ( E. b  e.  D  y  =  ( g `  b )  <->  E. z  e.  D  y  =  ( g `  z
) )
4440, 43syl6bb 252 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  y  ->  ( E. b  e.  D  a  =  ( g `  b )  <->  E. z  e.  D  y  =  ( g `  z
) ) )
4544rspcva 2895 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  C  /\  A. a  e.  C  E. b  e.  D  a  =  ( g `  b ) )  ->  E. z  e.  D  y  =  ( g `  z ) )
4645ancoms 439 . . . . . . . . . . . . . . . 16  |-  ( ( A. a  e.  C  E. b  e.  D  a  =  ( g `  b )  /\  y  e.  C )  ->  E. z  e.  D  y  =  ( g `  z
) )
47 ssun2 3352 . . . . . . . . . . . . . . . . 17  |-  D  C_  ( B  u.  D
)
48 minel 3523 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  e.  D  /\  ( B  i^i  D )  =  (/) )  ->  -.  z  e.  B )
4948ancoms 439 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( B  i^i  D
)  =  (/)  /\  z  e.  D )  ->  -.  z  e.  B )
50 iffalse 3585 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( -.  z  e.  B  ->  if ( z  e.  B ,  f ,  g )  =  g )
5149, 50syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( B  i^i  D
)  =  (/)  /\  z  e.  D )  ->  if ( z  e.  B ,  f ,  g )  =  g )
5251fveq1d 5543 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( B  i^i  D
)  =  (/)  /\  z  e.  D )  ->  ( if ( z  e.  B ,  f ,  g ) `  z )  =  ( g `  z ) )
5352eqeq2d 2307 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( B  i^i  D
)  =  (/)  /\  z  e.  D )  ->  (
y  =  ( if ( z  e.  B ,  f ,  g ) `  z )  <-> 
y  =  ( g `
 z ) ) )
5453biimprd 214 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( B  i^i  D
)  =  (/)  /\  z  e.  D )  ->  (
y  =  ( g `
 z )  -> 
y  =  ( if ( z  e.  B ,  f ,  g ) `  z ) ) )
5554reximdva 2668 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  i^i  D )  =  (/)  ->  ( E. z  e.  D  y  =  ( g `  z )  ->  E. z  e.  D  y  =  ( if ( z  e.  B ,  f ,  g ) `  z
) ) )
5655imp 418 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B  i^i  D
)  =  (/)  /\  E. z  e.  D  y  =  ( g `  z ) )  ->  E. z  e.  D  y  =  ( if ( z  e.  B ,  f ,  g ) `  z ) )
57 ssrexv 3251 . . . . . . . . . . . . . . . . 17  |-  ( D 
C_  ( B  u.  D )  ->  ( E. z  e.  D  y  =  ( if ( z  e.  B ,  f ,  g ) `  z )  ->  E. z  e.  ( B  u.  D ) y  =  ( if ( z  e.  B ,  f ,  g ) `  z ) ) )
5847, 56, 57mpsyl 59 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  i^i  D
)  =  (/)  /\  E. z  e.  D  y  =  ( g `  z ) )  ->  E. z  e.  ( B  u.  D )
y  =  ( if ( z  e.  B ,  f ,  g ) `  z ) )
5946, 58sylan2 460 . . . . . . . . . . . . . . 15  |-  ( ( ( B  i^i  D
)  =  (/)  /\  ( A. a  e.  C  E. b  e.  D  a  =  ( g `  b )  /\  y  e.  C ) )  ->  E. z  e.  ( B  u.  D )
y  =  ( if ( z  e.  B ,  f ,  g ) `  z ) )
6059anassrs 629 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  i^i  D )  =  (/)  /\  A. a  e.  C  E. b  e.  D  a  =  ( g `  b ) )  /\  y  e.  C )  ->  E. z  e.  ( B  u.  D ) y  =  ( if ( z  e.  B ,  f ,  g ) `  z ) )
6160adantlrl 700 . . . . . . . . . . . . 13  |-  ( ( ( ( B  i^i  D )  =  (/)  /\  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. a  e.  C  E. b  e.  D  a  =  ( g `  b ) ) )  /\  y  e.  C
)  ->  E. z  e.  ( B  u.  D
) y  =  ( if ( z  e.  B ,  f ,  g ) `  z
) )
6238, 61jaodan 760 . . . . . . . . . . . 12  |-  ( ( ( ( B  i^i  D )  =  (/)  /\  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. a  e.  C  E. b  e.  D  a  =  ( g `  b ) ) )  /\  ( y  e.  A  \/  y  e.  C ) )  ->  E. z  e.  ( B  u.  D )
y  =  ( if ( z  e.  B ,  f ,  g ) `  z ) )
6319, 62sylan2b 461 . . . . . . . . . . 11  |-  ( ( ( ( B  i^i  D )  =  (/)  /\  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. a  e.  C  E. b  e.  D  a  =  ( g `  b ) ) )  /\  y  e.  ( A  u.  C ) )  ->  E. z  e.  ( B  u.  D
) y  =  ( if ( z  e.  B ,  f ,  g ) `  z
) )
6463expl 601 . . . . . . . . . 10  |-  ( ( B  i^i  D )  =  (/)  ->  ( ( ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. a  e.  C  E. b  e.  D  a  =  ( g `  b ) )  /\  y  e.  ( A  u.  C
) )  ->  E. z  e.  ( B  u.  D
) y  =  ( if ( z  e.  B ,  f ,  g ) `  z
) ) )
65643ad2ant3 978 . . . . . . . . 9  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D
)  =  (/) )  -> 
( ( ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. a  e.  C  E. b  e.  D  a  =  ( g `  b ) )  /\  y  e.  ( A  u.  C ) )  ->  E. z  e.  ( B  u.  D )
y  =  ( if ( z  e.  B ,  f ,  g ) `  z ) ) )
6665impl 603 . . . . . . . 8  |-  ( ( ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D )  =  (/) )  /\  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. a  e.  C  E. b  e.  D  a  =  ( g `  b ) ) )  /\  y  e.  ( A  u.  C ) )  ->  E. z  e.  ( B  u.  D
) y  =  ( if ( z  e.  B ,  f ,  g ) `  z
) )
6712, 18, 66wdom2d 7310 . . . . . . 7  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D
)  =  (/) )  /\  ( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  /\  A. a  e.  C  E. b  e.  D  a  =  ( g `  b ) ) )  ->  ( A  u.  C )  ~<_*  ( B  u.  D
) )
6867expr 598 . . . . . 6  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D
)  =  (/) )  /\  A. a  e.  A  E. b  e.  B  a  =  ( f `  b ) )  -> 
( A. a  e.  C  E. b  e.  D  a  =  ( g `  b )  ->  ( A  u.  C )  ~<_*  ( B  u.  D
) ) )
6968exlimdv 1626 . . . . 5  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D
)  =  (/) )  /\  A. a  e.  A  E. b  e.  B  a  =  ( f `  b ) )  -> 
( E. g A. a  e.  C  E. b  e.  D  a  =  ( g `  b )  ->  ( A  u.  C )  ~<_*  ( B  u.  D ) ) )
705, 69mpd 14 . . . 4  |-  ( ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D
)  =  (/) )  /\  A. a  e.  A  E. b  e.  B  a  =  ( f `  b ) )  -> 
( A  u.  C
)  ~<_*  ( B  u.  D
) )
7170ex 423 . . 3  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D
)  =  (/) )  -> 
( A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  ->  ( A  u.  C )  ~<_*  ( B  u.  D
) ) )
7271exlimdv 1626 . 2  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D
)  =  (/) )  -> 
( E. f A. a  e.  A  E. b  e.  B  a  =  ( f `  b )  ->  ( A  u.  C )  ~<_*  ( B  u.  D ) ) )
732, 72mpd 14 1  |-  ( ( A  ~<_*  B  /\  C  ~<_*  D  /\  ( B  i^i  D
)  =  (/) )  -> 
( A  u.  C
)  ~<_*  ( B  u.  D
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   ifcif 3578   class class class wbr 4039   ` cfv 5271    ~<_* cwdom 7287
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-wdom 7289
  Copyright terms: Public domain W3C validator