MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unwf Unicode version

Theorem unwf 7498
Description: A binary union is well-founded iff its elements are. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
unwf  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  <-> 
( A  u.  B
)  e.  U. ( R1 " On ) )

Proof of Theorem unwf
StepHypRef Expression
1 r1rankidb 7492 . . . . . . . 8  |-  ( A  e.  U. ( R1
" On )  ->  A  C_  ( R1 `  ( rank `  A )
) )
21adantr 451 . . . . . . 7  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  A  C_  ( R1 `  ( rank `  A
) ) )
3 ssun1 3351 . . . . . . . 8  |-  ( rank `  A )  C_  (
( rank `  A )  u.  ( rank `  B
) )
4 rankdmr1 7489 . . . . . . . . 9  |-  ( rank `  A )  e.  dom  R1
5 r1funlim 7454 . . . . . . . . . . . 12  |-  ( Fun 
R1  /\  Lim  dom  R1 )
65simpri 448 . . . . . . . . . . 11  |-  Lim  dom  R1
7 limord 4467 . . . . . . . . . . 11  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
86, 7ax-mp 8 . . . . . . . . . 10  |-  Ord  dom  R1
9 rankdmr1 7489 . . . . . . . . . 10  |-  ( rank `  B )  e.  dom  R1
10 ordunel 4634 . . . . . . . . . 10  |-  ( ( Ord  dom  R1  /\  ( rank `  A )  e. 
dom  R1  /\  ( rank `  B )  e. 
dom  R1 )  ->  (
( rank `  A )  u.  ( rank `  B
) )  e.  dom  R1 )
118, 4, 9, 10mp3an 1277 . . . . . . . . 9  |-  ( (
rank `  A )  u.  ( rank `  B
) )  e.  dom  R1
12 r1ord3g 7467 . . . . . . . . 9  |-  ( ( ( rank `  A
)  e.  dom  R1  /\  ( ( rank `  A
)  u.  ( rank `  B ) )  e. 
dom  R1 )  ->  (
( rank `  A )  C_  ( ( rank `  A
)  u.  ( rank `  B ) )  -> 
( R1 `  ( rank `  A ) ) 
C_  ( R1 `  ( ( rank `  A
)  u.  ( rank `  B ) ) ) ) )
134, 11, 12mp2an 653 . . . . . . . 8  |-  ( (
rank `  A )  C_  ( ( rank `  A
)  u.  ( rank `  B ) )  -> 
( R1 `  ( rank `  A ) ) 
C_  ( R1 `  ( ( rank `  A
)  u.  ( rank `  B ) ) ) )
143, 13ax-mp 8 . . . . . . 7  |-  ( R1
`  ( rank `  A
) )  C_  ( R1 `  ( ( rank `  A )  u.  ( rank `  B ) ) )
152, 14syl6ss 3204 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  A  C_  ( R1 `  ( ( rank `  A )  u.  ( rank `  B ) ) ) )
16 r1rankidb 7492 . . . . . . . 8  |-  ( B  e.  U. ( R1
" On )  ->  B  C_  ( R1 `  ( rank `  B )
) )
1716adantl 452 . . . . . . 7  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  B  C_  ( R1 `  ( rank `  B
) ) )
18 ssun2 3352 . . . . . . . 8  |-  ( rank `  B )  C_  (
( rank `  A )  u.  ( rank `  B
) )
19 r1ord3g 7467 . . . . . . . . 9  |-  ( ( ( rank `  B
)  e.  dom  R1  /\  ( ( rank `  A
)  u.  ( rank `  B ) )  e. 
dom  R1 )  ->  (
( rank `  B )  C_  ( ( rank `  A
)  u.  ( rank `  B ) )  -> 
( R1 `  ( rank `  B ) ) 
C_  ( R1 `  ( ( rank `  A
)  u.  ( rank `  B ) ) ) ) )
209, 11, 19mp2an 653 . . . . . . . 8  |-  ( (
rank `  B )  C_  ( ( rank `  A
)  u.  ( rank `  B ) )  -> 
( R1 `  ( rank `  B ) ) 
C_  ( R1 `  ( ( rank `  A
)  u.  ( rank `  B ) ) ) )
2118, 20ax-mp 8 . . . . . . 7  |-  ( R1
`  ( rank `  B
) )  C_  ( R1 `  ( ( rank `  A )  u.  ( rank `  B ) ) )
2217, 21syl6ss 3204 . . . . . 6  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  B  C_  ( R1 `  ( ( rank `  A )  u.  ( rank `  B ) ) ) )
2315, 22unssd 3364 . . . . 5  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( A  u.  B )  C_  ( R1 `  ( ( rank `  A )  u.  ( rank `  B ) ) ) )
24 fvex 5555 . . . . . 6  |-  ( R1
`  ( ( rank `  A )  u.  ( rank `  B ) ) )  e.  _V
2524elpw2 4191 . . . . 5  |-  ( ( A  u.  B )  e.  ~P ( R1
`  ( ( rank `  A )  u.  ( rank `  B ) ) )  <->  ( A  u.  B )  C_  ( R1 `  ( ( rank `  A )  u.  ( rank `  B ) ) ) )
2623, 25sylibr 203 . . . 4  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( A  u.  B )  e.  ~P ( R1 `  ( (
rank `  A )  u.  ( rank `  B
) ) ) )
27 r1sucg 7457 . . . . 5  |-  ( ( ( rank `  A
)  u.  ( rank `  B ) )  e. 
dom  R1  ->  ( R1
`  suc  ( ( rank `  A )  u.  ( rank `  B
) ) )  =  ~P ( R1 `  ( ( rank `  A
)  u.  ( rank `  B ) ) ) )
2811, 27ax-mp 8 . . . 4  |-  ( R1
`  suc  ( ( rank `  A )  u.  ( rank `  B
) ) )  =  ~P ( R1 `  ( ( rank `  A
)  u.  ( rank `  B ) ) )
2926, 28syl6eleqr 2387 . . 3  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( A  u.  B )  e.  ( R1 `  suc  (
( rank `  A )  u.  ( rank `  B
) ) ) )
30 r1elwf 7484 . . 3  |-  ( ( A  u.  B )  e.  ( R1 `  suc  ( ( rank `  A
)  u.  ( rank `  B ) ) )  ->  ( A  u.  B )  e.  U. ( R1 " On ) )
3129, 30syl 15 . 2  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  ->  ( A  u.  B )  e.  U. ( R1 " On ) )
32 ssun1 3351 . . . 4  |-  A  C_  ( A  u.  B
)
33 sswf 7496 . . . 4  |-  ( ( ( A  u.  B
)  e.  U. ( R1 " On )  /\  A  C_  ( A  u.  B ) )  ->  A  e.  U. ( R1 " On ) )
3432, 33mpan2 652 . . 3  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  ->  A  e.  U. ( R1 " On ) )
35 ssun2 3352 . . . 4  |-  B  C_  ( A  u.  B
)
36 sswf 7496 . . . 4  |-  ( ( ( A  u.  B
)  e.  U. ( R1 " On )  /\  B  C_  ( A  u.  B ) )  ->  B  e.  U. ( R1 " On ) )
3735, 36mpan2 652 . . 3  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  ->  B  e.  U. ( R1 " On ) )
3834, 37jca 518 . 2  |-  ( ( A  u.  B )  e.  U. ( R1
" On )  -> 
( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) ) )
3931, 38impbii 180 1  |-  ( ( A  e.  U. ( R1 " On )  /\  B  e.  U. ( R1 " On ) )  <-> 
( A  u.  B
)  e.  U. ( R1 " On ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    u. cun 3163    C_ wss 3165   ~Pcpw 3638   U.cuni 3843   Ord word 4407   Oncon0 4408   Lim wlim 4409   suc csuc 4410   dom cdm 4705   "cima 4708   Fun wfun 5265   ` cfv 5271   R1cr1 7450   rankcrnk 7451
This theorem is referenced by:  prwf  7499  rankunb  7538
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-recs 6404  df-rdg 6439  df-r1 7452  df-rank 7453
  Copyright terms: Public domain W3C validator