MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzindi Unicode version

Theorem uzindi 11249
Description: Indirect strong induction on the upper integers. (Contributed by Stefan O'Rear, 25-Aug-2015.)
Hypotheses
Ref Expression
uzindi.a  |-  ( ph  ->  A  e.  V )
uzindi.b  |-  ( ph  ->  T  e.  ( ZZ>= `  L ) )
uzindi.c  |-  ( (
ph  /\  R  e.  ( L ... T )  /\  A. y ( S  e.  ( L..^ R )  ->  ch ) )  ->  ps )
uzindi.d  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
uzindi.e  |-  ( x  =  A  ->  ( ps 
<->  th ) )
uzindi.f  |-  ( x  =  y  ->  R  =  S )
uzindi.g  |-  ( x  =  A  ->  R  =  T )
Assertion
Ref Expression
uzindi  |-  ( ph  ->  th )
Distinct variable groups:    x, y, L    x, A    x, S    x, T, y    ch, x    ph, x, y    th, x    y, R    ps, y
Allowed substitution hints:    ps( x)    ch( y)    th( y)    A( y)    R( x)    S( y)    V( x, y)

Proof of Theorem uzindi
StepHypRef Expression
1 uzindi.b . . 3  |-  ( ph  ->  T  e.  ( ZZ>= `  L ) )
2 eluzfz2 10999 . . 3  |-  ( T  e.  ( ZZ>= `  L
)  ->  T  e.  ( L ... T ) )
31, 2syl 16 . 2  |-  ( ph  ->  T  e.  ( L ... T ) )
4 uzindi.a . . 3  |-  ( ph  ->  A  e.  V )
5 fzofi 11242 . . . 4  |-  ( L..^ T )  e.  Fin
6 finnum 7770 . . . 4  |-  ( ( L..^ T )  e. 
Fin  ->  ( L..^ T
)  e.  dom  card )
75, 6mp1i 12 . . 3  |-  ( ph  ->  ( L..^ T )  e.  dom  card )
8 simpll 731 . . . . . 6  |-  ( ( ( ph  /\  A. y ( ( L..^ S )  ~<  ( L..^ R )  ->  ( S  e.  ( L ... T )  ->  ch ) ) )  /\  R  e.  ( L ... T ) )  ->  ph )
9 simpr 448 . . . . . 6  |-  ( ( ( ph  /\  A. y ( ( L..^ S )  ~<  ( L..^ R )  ->  ( S  e.  ( L ... T )  ->  ch ) ) )  /\  R  e.  ( L ... T ) )  ->  R  e.  ( L ... T ) )
10 elfzuz3 10990 . . . . . . . . . . . . . . . 16  |-  ( R  e.  ( L ... T )  ->  T  e.  ( ZZ>= `  R )
)
1110adantl 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  R  e.  ( L ... T ) )  ->  T  e.  ( ZZ>= `  R )
)
12 fzoss2 11095 . . . . . . . . . . . . . . . 16  |-  ( T  e.  ( ZZ>= `  R
)  ->  ( L..^ R )  C_  ( L..^ T ) )
13 fzossfz 11089 . . . . . . . . . . . . . . . 16  |-  ( L..^ T )  C_  ( L ... T )
1412, 13syl6ss 3305 . . . . . . . . . . . . . . 15  |-  ( T  e.  ( ZZ>= `  R
)  ->  ( L..^ R )  C_  ( L ... T ) )
1511, 14syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  R  e.  ( L ... T ) )  ->  ( L..^ R )  C_  ( L ... T ) )
1615sselda 3293 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  R  e.  ( L ... T
) )  /\  S  e.  ( L..^ R ) )  ->  S  e.  ( L ... T ) )
17 fzofi 11242 . . . . . . . . . . . . . 14  |-  ( L..^ R )  e.  Fin
18 elfzofz 11086 . . . . . . . . . . . . . . . . 17  |-  ( S  e.  ( L..^ R
)  ->  S  e.  ( L ... R ) )
1918adantl 453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  R  e.  ( L ... T
) )  /\  S  e.  ( L..^ R ) )  ->  S  e.  ( L ... R ) )
20 elfzuz3 10990 . . . . . . . . . . . . . . . 16  |-  ( S  e.  ( L ... R )  ->  R  e.  ( ZZ>= `  S )
)
21 fzoss2 11095 . . . . . . . . . . . . . . . 16  |-  ( R  e.  ( ZZ>= `  S
)  ->  ( L..^ S )  C_  ( L..^ R ) )
2219, 20, 213syl 19 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  R  e.  ( L ... T
) )  /\  S  e.  ( L..^ R ) )  ->  ( L..^ S )  C_  ( L..^ R ) )
23 fzonel 11084 . . . . . . . . . . . . . . . . 17  |-  -.  S  e.  ( L..^ S )
2423jctr 527 . . . . . . . . . . . . . . . 16  |-  ( S  e.  ( L..^ R
)  ->  ( S  e.  ( L..^ R )  /\  -.  S  e.  ( L..^ S ) ) )
2524adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  R  e.  ( L ... T
) )  /\  S  e.  ( L..^ R ) )  ->  ( S  e.  ( L..^ R )  /\  -.  S  e.  ( L..^ S ) ) )
26 ssnelpss 3636 . . . . . . . . . . . . . . 15  |-  ( ( L..^ S )  C_  ( L..^ R )  -> 
( ( S  e.  ( L..^ R )  /\  -.  S  e.  ( L..^ S ) )  ->  ( L..^ S )  C.  ( L..^ R ) ) )
2722, 25, 26sylc 58 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  R  e.  ( L ... T
) )  /\  S  e.  ( L..^ R ) )  ->  ( L..^ S )  C.  ( L..^ R ) )
28 php3 7231 . . . . . . . . . . . . . 14  |-  ( ( ( L..^ R )  e.  Fin  /\  ( L..^ S )  C.  ( L..^ R ) )  -> 
( L..^ S ) 
~<  ( L..^ R ) )
2917, 27, 28sylancr 645 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  R  e.  ( L ... T
) )  /\  S  e.  ( L..^ R ) )  ->  ( L..^ S )  ~<  ( L..^ R ) )
30 id 20 . . . . . . . . . . . . . 14  |-  ( ( ( L..^ S ) 
~<  ( L..^ R )  ->  ( S  e.  ( L ... T
)  ->  ch )
)  ->  ( ( L..^ S )  ~<  ( L..^ R )  ->  ( S  e.  ( L ... T )  ->  ch ) ) )
3130com13 76 . . . . . . . . . . . . 13  |-  ( S  e.  ( L ... T )  ->  (
( L..^ S ) 
~<  ( L..^ R )  ->  ( ( ( L..^ S )  ~< 
( L..^ R )  ->  ( S  e.  ( L ... T
)  ->  ch )
)  ->  ch )
) )
3216, 29, 31sylc 58 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  R  e.  ( L ... T
) )  /\  S  e.  ( L..^ R ) )  ->  ( (
( L..^ S ) 
~<  ( L..^ R )  ->  ( S  e.  ( L ... T
)  ->  ch )
)  ->  ch )
)
3332ex 424 . . . . . . . . . . 11  |-  ( (
ph  /\  R  e.  ( L ... T ) )  ->  ( S  e.  ( L..^ R )  ->  ( ( ( L..^ S )  ~< 
( L..^ R )  ->  ( S  e.  ( L ... T
)  ->  ch )
)  ->  ch )
) )
3433com23 74 . . . . . . . . . 10  |-  ( (
ph  /\  R  e.  ( L ... T ) )  ->  ( (
( L..^ S ) 
~<  ( L..^ R )  ->  ( S  e.  ( L ... T
)  ->  ch )
)  ->  ( S  e.  ( L..^ R )  ->  ch ) ) )
3534alimdv 1628 . . . . . . . . 9  |-  ( (
ph  /\  R  e.  ( L ... T ) )  ->  ( A. y ( ( L..^ S )  ~<  ( L..^ R )  ->  ( S  e.  ( L ... T )  ->  ch ) )  ->  A. y
( S  e.  ( L..^ R )  ->  ch ) ) )
3635ex 424 . . . . . . . 8  |-  ( ph  ->  ( R  e.  ( L ... T )  ->  ( A. y
( ( L..^ S
)  ~<  ( L..^ R
)  ->  ( S  e.  ( L ... T
)  ->  ch )
)  ->  A. y
( S  e.  ( L..^ R )  ->  ch ) ) ) )
3736com23 74 . . . . . . 7  |-  ( ph  ->  ( A. y ( ( L..^ S ) 
~<  ( L..^ R )  ->  ( S  e.  ( L ... T
)  ->  ch )
)  ->  ( R  e.  ( L ... T
)  ->  A. y
( S  e.  ( L..^ R )  ->  ch ) ) ) )
3837imp31 422 . . . . . 6  |-  ( ( ( ph  /\  A. y ( ( L..^ S )  ~<  ( L..^ R )  ->  ( S  e.  ( L ... T )  ->  ch ) ) )  /\  R  e.  ( L ... T ) )  ->  A. y ( S  e.  ( L..^ R )  ->  ch ) )
39 uzindi.c . . . . . 6  |-  ( (
ph  /\  R  e.  ( L ... T )  /\  A. y ( S  e.  ( L..^ R )  ->  ch ) )  ->  ps )
408, 9, 38, 39syl3anc 1184 . . . . 5  |-  ( ( ( ph  /\  A. y ( ( L..^ S )  ~<  ( L..^ R )  ->  ( S  e.  ( L ... T )  ->  ch ) ) )  /\  R  e.  ( L ... T ) )  ->  ps )
4140ex 424 . . . 4  |-  ( (
ph  /\  A. y
( ( L..^ S
)  ~<  ( L..^ R
)  ->  ( S  e.  ( L ... T
)  ->  ch )
) )  ->  ( R  e.  ( L ... T )  ->  ps ) )
42413adant2 976 . . 3  |-  ( (
ph  /\  ( L..^ R )  ~<_  ( L..^ T )  /\  A. y ( ( L..^ S )  ~<  ( L..^ R )  ->  ( S  e.  ( L ... T )  ->  ch ) ) )  -> 
( R  e.  ( L ... T )  ->  ps ) )
43 uzindi.f . . . . 5  |-  ( x  =  y  ->  R  =  S )
4443eleq1d 2455 . . . 4  |-  ( x  =  y  ->  ( R  e.  ( L ... T )  <->  S  e.  ( L ... T ) ) )
45 uzindi.d . . . 4  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
4644, 45imbi12d 312 . . 3  |-  ( x  =  y  ->  (
( R  e.  ( L ... T )  ->  ps )  <->  ( S  e.  ( L ... T
)  ->  ch )
) )
47 uzindi.g . . . . 5  |-  ( x  =  A  ->  R  =  T )
4847eleq1d 2455 . . . 4  |-  ( x  =  A  ->  ( R  e.  ( L ... T )  <->  T  e.  ( L ... T ) ) )
49 uzindi.e . . . 4  |-  ( x  =  A  ->  ( ps 
<->  th ) )
5048, 49imbi12d 312 . . 3  |-  ( x  =  A  ->  (
( R  e.  ( L ... T )  ->  ps )  <->  ( T  e.  ( L ... T
)  ->  th )
) )
5143oveq2d 6038 . . 3  |-  ( x  =  y  ->  ( L..^ R )  =  ( L..^ S ) )
5247oveq2d 6038 . . 3  |-  ( x  =  A  ->  ( L..^ R )  =  ( L..^ T ) )
534, 7, 42, 46, 50, 51, 52indcardi 7857 . 2  |-  ( ph  ->  ( T  e.  ( L ... T )  ->  th ) )
543, 53mpd 15 1  |-  ( ph  ->  th )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1546    = wceq 1649    e. wcel 1717    C_ wss 3265    C. wpss 3266   class class class wbr 4155   dom cdm 4820   ` cfv 5396  (class class class)co 6022    ~<_ cdom 7045    ~< csdm 7046   Fincfn 7047   cardccrd 7757   ZZ>=cuz 10422   ...cfz 10977  ..^cfzo 11067
This theorem is referenced by:  psgnunilem4  27091
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-se 4485  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-isom 5405  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-er 6843  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-card 7761  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-n0 10156  df-z 10217  df-uz 10423  df-fz 10978  df-fzo 11068
  Copyright terms: Public domain W3C validator