MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem10 Unicode version

Theorem vdwlem10 13039
Description: Lemma for vdw 13043. Set up secondary induction on  M. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdw.r  |-  ( ph  ->  R  e.  Fin )
vdwlem9.k  |-  ( ph  ->  K  e.  ( ZZ>= ` 
2 ) )
vdwlem9.s  |-  ( ph  ->  A. s  e.  Fin  E. n  e.  NN  A. f  e.  ( s  ^m  ( 1 ... n
) ) K MonoAP  f
)
vdwlem10.m  |-  ( ph  ->  M  e.  NN )
Assertion
Ref Expression
vdwlem10  |-  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. M ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
)
Distinct variable groups:    ph, n, f   
f, s, K, n   
f, M, n    R, f, n, s    ph, f
Allowed substitution hints:    ph( s)    M( s)

Proof of Theorem vdwlem10
Dummy variables  a 
c  d  g  h  k  m  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwlem10.m . 2  |-  ( ph  ->  M  e.  NN )
2 opeq1 3798 . . . . . . 7  |-  ( x  =  1  ->  <. x ,  K >.  =  <. 1 ,  K >. )
32breq1d 4035 . . . . . 6  |-  ( x  =  1  ->  ( <. x ,  K >. PolyAP  f  <->  <. 1 ,  K >. PolyAP  f ) )
43orbi1d 683 . . . . 5  |-  ( x  =  1  ->  (
( <. x ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
)  <->  ( <. 1 ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP 
f ) ) )
54rexralbidv 2589 . . . 4  |-  ( x  =  1  ->  ( E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. x ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )  <->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n
) ) ( <.
1 ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) )
65imbi2d 307 . . 3  |-  ( x  =  1  ->  (
( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) ( <. x ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) )  <->  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. 1 ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) ) ) )
7 opeq1 3798 . . . . . . 7  |-  ( x  =  m  ->  <. x ,  K >.  =  <. m ,  K >. )
87breq1d 4035 . . . . . 6  |-  ( x  =  m  ->  ( <. x ,  K >. PolyAP  f  <->  <. m ,  K >. PolyAP  f ) )
98orbi1d 683 . . . . 5  |-  ( x  =  m  ->  (
( <. x ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
)  <->  ( <. m ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP 
f ) ) )
109rexralbidv 2589 . . . 4  |-  ( x  =  m  ->  ( E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. x ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )  <->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n
) ) ( <.
m ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) )
1110imbi2d 307 . . 3  |-  ( x  =  m  ->  (
( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) ( <. x ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) )  <->  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. m ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) ) )
12 opeq1 3798 . . . . . . 7  |-  ( x  =  ( m  + 
1 )  ->  <. x ,  K >.  =  <. ( m  +  1 ) ,  K >. )
1312breq1d 4035 . . . . . 6  |-  ( x  =  ( m  + 
1 )  ->  ( <. x ,  K >. PolyAP  f  <->  <. ( m  +  1 ) ,  K >. PolyAP  f ) )
1413orbi1d 683 . . . . 5  |-  ( x  =  ( m  + 
1 )  ->  (
( <. x ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
)  <->  ( <. (
m  +  1 ) ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f ) ) )
1514rexralbidv 2589 . . . 4  |-  ( x  =  ( m  + 
1 )  ->  ( E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. x ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )  <->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n
) ) ( <.
( m  +  1 ) ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) )
1615imbi2d 307 . . 3  |-  ( x  =  ( m  + 
1 )  ->  (
( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) ( <. x ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) )  <->  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. ( m  +  1 ) ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) ) )
17 opeq1 3798 . . . . . . 7  |-  ( x  =  M  ->  <. x ,  K >.  =  <. M ,  K >. )
1817breq1d 4035 . . . . . 6  |-  ( x  =  M  ->  ( <. x ,  K >. PolyAP  f  <->  <. M ,  K >. PolyAP  f ) )
1918orbi1d 683 . . . . 5  |-  ( x  =  M  ->  (
( <. x ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
)  <->  ( <. M ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP 
f ) ) )
2019rexralbidv 2589 . . . 4  |-  ( x  =  M  ->  ( E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. x ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )  <->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n
) ) ( <. M ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) )
2120imbi2d 307 . . 3  |-  ( x  =  M  ->  (
( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) ( <. x ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) )  <->  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. M ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) ) )
22 vdw.r . . . . . 6  |-  ( ph  ->  R  e.  Fin )
23 vdwlem9.s . . . . . 6  |-  ( ph  ->  A. s  e.  Fin  E. n  e.  NN  A. f  e.  ( s  ^m  ( 1 ... n
) ) K MonoAP  f
)
24 oveq1 5867 . . . . . . . . 9  |-  ( s  =  R  ->  (
s  ^m  ( 1 ... n ) )  =  ( R  ^m  ( 1 ... n
) ) )
2524raleqdv 2744 . . . . . . . 8  |-  ( s  =  R  ->  ( A. f  e.  (
s  ^m  ( 1 ... n ) ) K MonoAP  f  <->  A. f  e.  ( R  ^m  (
1 ... n ) ) K MonoAP  f ) )
2625rexbidv 2566 . . . . . . 7  |-  ( s  =  R  ->  ( E. n  e.  NN  A. f  e.  ( s  ^m  ( 1 ... n ) ) K MonoAP 
f  <->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f ) )
2726rspcv 2882 . . . . . 6  |-  ( R  e.  Fin  ->  ( A. s  e.  Fin  E. n  e.  NN  A. f  e.  ( s  ^m  ( 1 ... n
) ) K MonoAP  f  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f ) )
2822, 23, 27sylc 56 . . . . 5  |-  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f )
29 oveq2 5868 . . . . . . . 8  |-  ( n  =  w  ->  (
1 ... n )  =  ( 1 ... w
) )
3029oveq2d 5876 . . . . . . 7  |-  ( n  =  w  ->  ( R  ^m  ( 1 ... n ) )  =  ( R  ^m  (
1 ... w ) ) )
3130raleqdv 2744 . . . . . 6  |-  ( n  =  w  ->  ( A. f  e.  ( R  ^m  ( 1 ... n ) ) K MonoAP 
f  <->  A. f  e.  ( R  ^m  ( 1 ... w ) ) K MonoAP  f ) )
3231cbvrexv 2767 . . . . 5  |-  ( E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n
) ) K MonoAP  f  <->  E. w  e.  NN  A. f  e.  ( R  ^m  ( 1 ... w
) ) K MonoAP  f
)
3328, 32sylib 188 . . . 4  |-  ( ph  ->  E. w  e.  NN  A. f  e.  ( R  ^m  ( 1 ... w ) ) K MonoAP 
f )
34 breq2 4029 . . . . . . 7  |-  ( f  =  g  ->  ( K MonoAP  f  <->  K MonoAP  g )
)
3534cbvralv 2766 . . . . . 6  |-  ( A. f  e.  ( R  ^m  ( 1 ... w
) ) K MonoAP  f  <->  A. g  e.  ( R  ^m  ( 1 ... w ) ) K MonoAP 
g )
36 2nn 9879 . . . . . . . 8  |-  2  e.  NN
37 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  w  e.  NN )  ->  w  e.  NN )
38 nnmulcl 9771 . . . . . . . 8  |-  ( ( 2  e.  NN  /\  w  e.  NN )  ->  ( 2  x.  w
)  e.  NN )
3936, 37, 38sylancr 644 . . . . . . 7  |-  ( (
ph  /\  w  e.  NN )  ->  ( 2  x.  w )  e.  NN )
4022adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  w  e.  NN )  ->  R  e. 
Fin )
41 ovex 5885 . . . . . . . . . . 11  |-  ( 1 ... ( 2  x.  w ) )  e. 
_V
42 elmapg 6787 . . . . . . . . . . 11  |-  ( ( R  e.  Fin  /\  ( 1 ... (
2  x.  w ) )  e.  _V )  ->  ( f  e.  ( R  ^m  ( 1 ... ( 2  x.  w ) ) )  <-> 
f : ( 1 ... ( 2  x.  w ) ) --> R ) )
4340, 41, 42sylancl 643 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  NN )  ->  ( f  e.  ( R  ^m  ( 1 ... (
2  x.  w ) ) )  <->  f :
( 1 ... (
2  x.  w ) ) --> R ) )
4443biimpa 470 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  NN )  /\  f  e.  ( R  ^m  (
1 ... ( 2  x.  w ) ) ) )  ->  f :
( 1 ... (
2  x.  w ) ) --> R )
45 simplr 731 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  f : ( 1 ... ( 2  x.  w
) ) --> R )
46 elfznn 10821 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( 1 ... w )  ->  y  e.  NN )
4746adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  y  e.  NN )
4847nnred 9763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  y  e.  RR )
49 simpllr 735 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  w  e.  NN )
5049nnred 9763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  w  e.  RR )
51 elfzle2 10802 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( 1 ... w )  ->  y  <_  w )
5251adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  y  <_  w )
5348, 50, 50, 52leadd1dd 9388 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  (
y  +  w )  <_  ( w  +  w ) )
5449nncnd 9764 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  w  e.  CC )
55542timesd 9956 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  (
2  x.  w )  =  ( w  +  w ) )
5653, 55breqtrrd 4051 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  (
y  +  w )  <_  ( 2  x.  w ) )
5747, 49nnaddcld 9794 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  (
y  +  w )  e.  NN )
58 nnuz 10265 . . . . . . . . . . . . . . . . 17  |-  NN  =  ( ZZ>= `  1 )
5957, 58syl6eleq 2375 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  (
y  +  w )  e.  ( ZZ>= `  1
) )
6039ad2antrr 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  (
2  x.  w )  e.  NN )
6160nnzd 10118 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  (
2  x.  w )  e.  ZZ )
62 elfz5 10792 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  +  w
)  e.  ( ZZ>= ` 
1 )  /\  (
2  x.  w )  e.  ZZ )  -> 
( ( y  +  w )  e.  ( 1 ... ( 2  x.  w ) )  <-> 
( y  +  w
)  <_  ( 2  x.  w ) ) )
6359, 61, 62syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  (
( y  +  w
)  e.  ( 1 ... ( 2  x.  w ) )  <->  ( y  +  w )  <_  (
2  x.  w ) ) )
6456, 63mpbird 223 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  (
y  +  w )  e.  ( 1 ... ( 2  x.  w
) ) )
65 ffvelrn 5665 . . . . . . . . . . . . . 14  |-  ( ( f : ( 1 ... ( 2  x.  w ) ) --> R  /\  ( y  +  w )  e.  ( 1 ... ( 2  x.  w ) ) )  ->  ( f `  ( y  +  w
) )  e.  R
)
6645, 64, 65syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  y  e.  ( 1 ... w
) )  ->  (
f `  ( y  +  w ) )  e.  R )
67 oveq1 5867 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  (
x  +  w )  =  ( y  +  w ) )
6867fveq2d 5531 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
f `  ( x  +  w ) )  =  ( f `  (
y  +  w ) ) )
6968cbvmptv 4113 . . . . . . . . . . . . 13  |-  ( x  e.  ( 1 ... w )  |->  ( f `
 ( x  +  w ) ) )  =  ( y  e.  ( 1 ... w
)  |->  ( f `  ( y  +  w
) ) )
7066, 69fmptd 5686 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w
) ) --> R )  ->  ( x  e.  ( 1 ... w
)  |->  ( f `  ( x  +  w
) ) ) : ( 1 ... w
) --> R )
71 ovex 5885 . . . . . . . . . . . . . 14  |-  ( 1 ... w )  e. 
_V
72 elmapg 6787 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Fin  /\  ( 1 ... w
)  e.  _V )  ->  ( ( x  e.  ( 1 ... w
)  |->  ( f `  ( x  +  w
) ) )  e.  ( R  ^m  (
1 ... w ) )  <-> 
( x  e.  ( 1 ... w ) 
|->  ( f `  (
x  +  w ) ) ) : ( 1 ... w ) --> R ) )
7340, 71, 72sylancl 643 . . . . . . . . . . . . 13  |-  ( (
ph  /\  w  e.  NN )  ->  ( ( x  e.  ( 1 ... w )  |->  ( f `  ( x  +  w ) ) )  e.  ( R  ^m  ( 1 ... w ) )  <->  ( x  e.  ( 1 ... w
)  |->  ( f `  ( x  +  w
) ) ) : ( 1 ... w
) --> R ) )
7473biimpar 471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  NN )  /\  (
x  e.  ( 1 ... w )  |->  ( f `  ( x  +  w ) ) ) : ( 1 ... w ) --> R )  ->  ( x  e.  ( 1 ... w
)  |->  ( f `  ( x  +  w
) ) )  e.  ( R  ^m  (
1 ... w ) ) )
7570, 74syldan 456 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w
) ) --> R )  ->  ( x  e.  ( 1 ... w
)  |->  ( f `  ( x  +  w
) ) )  e.  ( R  ^m  (
1 ... w ) ) )
76 breq2 4029 . . . . . . . . . . . 12  |-  ( g  =  ( x  e.  ( 1 ... w
)  |->  ( f `  ( x  +  w
) ) )  -> 
( K MonoAP  g  <->  K MonoAP  ( x  e.  ( 1 ... w )  |->  ( f `
 ( x  +  w ) ) ) ) )
7776rspcv 2882 . . . . . . . . . . 11  |-  ( ( x  e.  ( 1 ... w )  |->  ( f `  ( x  +  w ) ) )  e.  ( R  ^m  ( 1 ... w ) )  -> 
( A. g  e.  ( R  ^m  (
1 ... w ) ) K MonoAP  g  ->  K MonoAP  ( x  e.  ( 1 ... w )  |->  ( f `  ( x  +  w ) ) ) ) )
7875, 77syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w
) ) --> R )  ->  ( A. g  e.  ( R  ^m  (
1 ... w ) ) K MonoAP  g  ->  K MonoAP  ( x  e.  ( 1 ... w )  |->  ( f `  ( x  +  w ) ) ) ) )
79 2nn0 9984 . . . . . . . . . . . . 13  |-  2  e.  NN0
80 vdwlem9.k . . . . . . . . . . . . . 14  |-  ( ph  ->  K  e.  ( ZZ>= ` 
2 ) )
8180ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w
) ) --> R )  ->  K  e.  (
ZZ>= `  2 ) )
82 eluznn0 10290 . . . . . . . . . . . . 13  |-  ( ( 2  e.  NN0  /\  K  e.  ( ZZ>= ` 
2 ) )  ->  K  e.  NN0 )
8379, 81, 82sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w
) ) --> R )  ->  K  e.  NN0 )
8471, 83, 70vdwmc 13027 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w
) ) --> R )  ->  ( K MonoAP  (
x  e.  ( 1 ... w )  |->  ( f `  ( x  +  w ) ) )  <->  E. c E. a  e.  NN  E. d  e.  NN  ( a (AP
`  K ) d )  C_  ( `' ( x  e.  (
1 ... w )  |->  ( f `  ( x  +  w ) ) ) " { c } ) ) )
8540ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  ( ( a  e.  NN  /\  d  e.  NN )  /\  ( a (AP `  K ) d ) 
C_  ( `' ( x  e.  ( 1 ... w )  |->  ( f `  ( x  +  w ) ) ) " { c } ) ) )  ->  R  e.  Fin )
8681adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  ( ( a  e.  NN  /\  d  e.  NN )  /\  ( a (AP `  K ) d ) 
C_  ( `' ( x  e.  ( 1 ... w )  |->  ( f `  ( x  +  w ) ) ) " { c } ) ) )  ->  K  e.  (
ZZ>= `  2 ) )
87 simpllr 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  ( ( a  e.  NN  /\  d  e.  NN )  /\  ( a (AP `  K ) d ) 
C_  ( `' ( x  e.  ( 1 ... w )  |->  ( f `  ( x  +  w ) ) ) " { c } ) ) )  ->  w  e.  NN )
88 simplr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  ( ( a  e.  NN  /\  d  e.  NN )  /\  ( a (AP `  K ) d ) 
C_  ( `' ( x  e.  ( 1 ... w )  |->  ( f `  ( x  +  w ) ) ) " { c } ) ) )  ->  f : ( 1 ... ( 2  x.  w ) ) --> R )
89 vex 2793 . . . . . . . . . . . . . . . 16  |-  c  e. 
_V
90 simprll 738 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  ( ( a  e.  NN  /\  d  e.  NN )  /\  ( a (AP `  K ) d ) 
C_  ( `' ( x  e.  ( 1 ... w )  |->  ( f `  ( x  +  w ) ) ) " { c } ) ) )  ->  a  e.  NN )
91 simprlr 739 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  ( ( a  e.  NN  /\  d  e.  NN )  /\  ( a (AP `  K ) d ) 
C_  ( `' ( x  e.  ( 1 ... w )  |->  ( f `  ( x  +  w ) ) ) " { c } ) ) )  ->  d  e.  NN )
92 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  ( ( a  e.  NN  /\  d  e.  NN )  /\  ( a (AP `  K ) d ) 
C_  ( `' ( x  e.  ( 1 ... w )  |->  ( f `  ( x  +  w ) ) ) " { c } ) ) )  ->  ( a (AP
`  K ) d )  C_  ( `' ( x  e.  (
1 ... w )  |->  ( f `  ( x  +  w ) ) ) " { c } ) )
9385, 86, 87, 88, 89, 90, 91, 92, 69vdwlem8 13037 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  ( ( a  e.  NN  /\  d  e.  NN )  /\  ( a (AP `  K ) d ) 
C_  ( `' ( x  e.  ( 1 ... w )  |->  ( f `  ( x  +  w ) ) ) " { c } ) ) )  ->  <. 1 ,  K >. PolyAP  f )
9493orcd 381 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  ( ( a  e.  NN  /\  d  e.  NN )  /\  ( a (AP `  K ) d ) 
C_  ( `' ( x  e.  ( 1 ... w )  |->  ( f `  ( x  +  w ) ) ) " { c } ) ) )  ->  ( <. 1 ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP 
f ) )
9594expr 598 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w ) ) --> R )  /\  ( a  e.  NN  /\  d  e.  NN ) )  -> 
( ( a (AP
`  K ) d )  C_  ( `' ( x  e.  (
1 ... w )  |->  ( f `  ( x  +  w ) ) ) " { c } )  ->  ( <. 1 ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) )
9695rexlimdvva 2676 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w
) ) --> R )  ->  ( E. a  e.  NN  E. d  e.  NN  ( a (AP
`  K ) d )  C_  ( `' ( x  e.  (
1 ... w )  |->  ( f `  ( x  +  w ) ) ) " { c } )  ->  ( <. 1 ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) )
9796exlimdv 1666 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w
) ) --> R )  ->  ( E. c E. a  e.  NN  E. d  e.  NN  (
a (AP `  K
) d )  C_  ( `' ( x  e.  ( 1 ... w
)  |->  ( f `  ( x  +  w
) ) ) " { c } )  ->  ( <. 1 ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP 
f ) ) )
9884, 97sylbid 206 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w
) ) --> R )  ->  ( K MonoAP  (
x  e.  ( 1 ... w )  |->  ( f `  ( x  +  w ) ) )  ->  ( <. 1 ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) )
9978, 98syld 40 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  NN )  /\  f : ( 1 ... ( 2  x.  w
) ) --> R )  ->  ( A. g  e.  ( R  ^m  (
1 ... w ) ) K MonoAP  g  ->  ( <. 1 ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) )
10044, 99syldan 456 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  NN )  /\  f  e.  ( R  ^m  (
1 ... ( 2  x.  w ) ) ) )  ->  ( A. g  e.  ( R  ^m  ( 1 ... w
) ) K MonoAP  g  ->  ( <. 1 ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) ) )
101100ralrimdva 2635 . . . . . . 7  |-  ( (
ph  /\  w  e.  NN )  ->  ( A. g  e.  ( R  ^m  ( 1 ... w
) ) K MonoAP  g  ->  A. f  e.  ( R  ^m  ( 1 ... ( 2  x.  w ) ) ) ( <. 1 ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) ) )
102 oveq2 5868 . . . . . . . . . 10  |-  ( n  =  ( 2  x.  w )  ->  (
1 ... n )  =  ( 1 ... (
2  x.  w ) ) )
103102oveq2d 5876 . . . . . . . . 9  |-  ( n  =  ( 2  x.  w )  ->  ( R  ^m  ( 1 ... n ) )  =  ( R  ^m  (
1 ... ( 2  x.  w ) ) ) )
104103raleqdv 2744 . . . . . . . 8  |-  ( n  =  ( 2  x.  w )  ->  ( A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. 1 ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
)  <->  A. f  e.  ( R  ^m  ( 1 ... ( 2  x.  w ) ) ) ( <. 1 ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) ) )
105104rspcev 2886 . . . . . . 7  |-  ( ( ( 2  x.  w
)  e.  NN  /\  A. f  e.  ( R  ^m  ( 1 ... ( 2  x.  w
) ) ) (
<. 1 ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) ( <. 1 ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) )
10639, 101, 105ee12an 1353 . . . . . 6  |-  ( (
ph  /\  w  e.  NN )  ->  ( A. g  e.  ( R  ^m  ( 1 ... w
) ) K MonoAP  g  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. 1 ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) ) )
10735, 106syl5bi 208 . . . . 5  |-  ( (
ph  /\  w  e.  NN )  ->  ( A. f  e.  ( R  ^m  ( 1 ... w
) ) K MonoAP  f  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. 1 ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) ) )
108107rexlimdva 2669 . . . 4  |-  ( ph  ->  ( E. w  e.  NN  A. f  e.  ( R  ^m  (
1 ... w ) ) K MonoAP  f  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) ( <. 1 ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) ) )
10933, 108mpd 14 . . 3  |-  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. 1 ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) )
110 breq2 4029 . . . . . . . . . 10  |-  ( f  =  g  ->  ( <. m ,  K >. PolyAP  f  <->  <. m ,  K >. PolyAP  g ) )
111 breq2 4029 . . . . . . . . . 10  |-  ( f  =  g  ->  (
( K  +  1 ) MonoAP  f  <->  ( K  +  1 ) MonoAP  g
) )
112110, 111orbi12d 690 . . . . . . . . 9  |-  ( f  =  g  ->  (
( <. m ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
)  <->  ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP 
g ) ) )
113112cbvralv 2766 . . . . . . . 8  |-  ( A. f  e.  ( R  ^m  ( 1 ... n
) ) ( <.
m ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )  <->  A. g  e.  ( R  ^m  ( 1 ... n ) ) (
<. m ,  K >. PolyAP  g  \/  ( K  + 
1 ) MonoAP  g )
)
11430raleqdv 2744 . . . . . . . 8  |-  ( n  =  w  ->  ( A. g  e.  ( R  ^m  ( 1 ... n ) ) (
<. m ,  K >. PolyAP  g  \/  ( K  + 
1 ) MonoAP  g )  <->  A. g  e.  ( R  ^m  ( 1 ... w ) ) (
<. m ,  K >. PolyAP  g  \/  ( K  + 
1 ) MonoAP  g )
) )
115113, 114syl5bb 248 . . . . . . 7  |-  ( n  =  w  ->  ( A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. m ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )  <->  A. g  e.  ( R  ^m  ( 1 ... w ) ) (
<. m ,  K >. PolyAP  g  \/  ( K  + 
1 ) MonoAP  g )
) )
116115cbvrexv 2767 . . . . . 6  |-  ( E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n
) ) ( <.
m ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )  <->  E. w  e.  NN  A. g  e.  ( R  ^m  ( 1 ... w
) ) ( <.
m ,  K >. PolyAP  g  \/  ( K  + 
1 ) MonoAP  g )
)
11722ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
w  e.  NN  /\  A. g  e.  ( R  ^m  ( 1 ... w ) ) (
<. m ,  K >. PolyAP  g  \/  ( K  + 
1 ) MonoAP  g )
) )  ->  R  e.  Fin )
118 fzfi 11036 . . . . . . . . . . 11  |-  ( 1 ... w )  e. 
Fin
119 mapfi 7154 . . . . . . . . . . 11  |-  ( ( R  e.  Fin  /\  ( 1 ... w
)  e.  Fin )  ->  ( R  ^m  (
1 ... w ) )  e.  Fin )
120117, 118, 119sylancl 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
w  e.  NN  /\  A. g  e.  ( R  ^m  ( 1 ... w ) ) (
<. m ,  K >. PolyAP  g  \/  ( K  + 
1 ) MonoAP  g )
) )  ->  ( R  ^m  ( 1 ... w ) )  e. 
Fin )
12123ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
w  e.  NN  /\  A. g  e.  ( R  ^m  ( 1 ... w ) ) (
<. m ,  K >. PolyAP  g  \/  ( K  + 
1 ) MonoAP  g )
) )  ->  A. s  e.  Fin  E. n  e.  NN  A. f  e.  ( s  ^m  (
1 ... n ) ) K MonoAP  f )
122 oveq2 5868 . . . . . . . . . . . . . . 15  |-  ( n  =  v  ->  (
1 ... n )  =  ( 1 ... v
) )
123122oveq2d 5876 . . . . . . . . . . . . . 14  |-  ( n  =  v  ->  (
s  ^m  ( 1 ... n ) )  =  ( s  ^m  ( 1 ... v
) ) )
124123raleqdv 2744 . . . . . . . . . . . . 13  |-  ( n  =  v  ->  ( A. f  e.  (
s  ^m  ( 1 ... n ) ) K MonoAP  f  <->  A. f  e.  ( s  ^m  (
1 ... v ) ) K MonoAP  f ) )
125124cbvrexv 2767 . . . . . . . . . . . 12  |-  ( E. n  e.  NN  A. f  e.  ( s  ^m  ( 1 ... n
) ) K MonoAP  f  <->  E. v  e.  NN  A. f  e.  ( s  ^m  ( 1 ... v
) ) K MonoAP  f
)
126 oveq1 5867 . . . . . . . . . . . . . 14  |-  ( s  =  ( R  ^m  ( 1 ... w
) )  ->  (
s  ^m  ( 1 ... v ) )  =  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v
) ) )
127126raleqdv 2744 . . . . . . . . . . . . 13  |-  ( s  =  ( R  ^m  ( 1 ... w
) )  ->  ( A. f  e.  (
s  ^m  ( 1 ... v ) ) K MonoAP  f  <->  A. f  e.  ( ( R  ^m  ( 1 ... w
) )  ^m  (
1 ... v ) ) K MonoAP  f ) )
128127rexbidv 2566 . . . . . . . . . . . 12  |-  ( s  =  ( R  ^m  ( 1 ... w
) )  ->  ( E. v  e.  NN  A. f  e.  ( s  ^m  ( 1 ... v ) ) K MonoAP 
f  <->  E. v  e.  NN  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )
129125, 128syl5bb 248 . . . . . . . . . . 11  |-  ( s  =  ( R  ^m  ( 1 ... w
) )  ->  ( E. n  e.  NN  A. f  e.  ( s  ^m  ( 1 ... n ) ) K MonoAP 
f  <->  E. v  e.  NN  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )
130129rspcv 2882 . . . . . . . . . 10  |-  ( ( R  ^m  ( 1 ... w ) )  e.  Fin  ->  ( A. s  e.  Fin  E. n  e.  NN  A. f  e.  ( s  ^m  ( 1 ... n
) ) K MonoAP  f  ->  E. v  e.  NN  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )
131120, 121, 130sylc 56 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
w  e.  NN  /\  A. g  e.  ( R  ^m  ( 1 ... w ) ) (
<. m ,  K >. PolyAP  g  \/  ( K  + 
1 ) MonoAP  g )
) )  ->  E. v  e.  NN  A. f  e.  ( ( R  ^m  ( 1 ... w
) )  ^m  (
1 ... v ) ) K MonoAP  f )
132 simprll 738 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) ) )  ->  w  e.  NN )
133 simprrl 740 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) ) )  ->  v  e.  NN )
134 nnmulcl 9771 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  NN  /\  v  e.  NN )  ->  ( 2  x.  v
)  e.  NN )
13536, 134mpan 651 . . . . . . . . . . . . . . 15  |-  ( v  e.  NN  ->  (
2  x.  v )  e.  NN )
136 nnmulcl 9771 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  NN  /\  ( 2  x.  v
)  e.  NN )  ->  ( w  x.  ( 2  x.  v
) )  e.  NN )
137135, 136sylan2 460 . . . . . . . . . . . . . 14  |-  ( ( w  e.  NN  /\  v  e.  NN )  ->  ( w  x.  (
2  x.  v ) )  e.  NN )
138132, 133, 137syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) ) )  ->  ( w  x.  ( 2  x.  v
) )  e.  NN )
139 simp1l 979 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )  /\  h  e.  ( R  ^m  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) ) )  ->  ph )
140139, 22syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )  /\  h  e.  ( R  ^m  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) ) )  ->  R  e.  Fin )
141139, 80syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )  /\  h  e.  ( R  ^m  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) ) )  ->  K  e.  ( ZZ>= ` 
2 ) )
142139, 23syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )  /\  h  e.  ( R  ^m  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) ) )  ->  A. s  e.  Fin  E. n  e.  NN  A. f  e.  ( s  ^m  ( 1 ... n
) ) K MonoAP  f
)
143 simp1r 980 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )  /\  h  e.  ( R  ^m  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) ) )  ->  m  e.  NN )
144 simp2ll 1022 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )  /\  h  e.  ( R  ^m  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) ) )  ->  w  e.  NN )
145 simp2lr 1023 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )  /\  h  e.  ( R  ^m  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) ) )  ->  A. g  e.  ( R  ^m  ( 1 ... w ) ) (
<. m ,  K >. PolyAP  g  \/  ( K  + 
1 ) MonoAP  g )
)
146 breq2 4029 . . . . . . . . . . . . . . . . . . 19  |-  ( g  =  k  ->  ( <. m ,  K >. PolyAP  g  <->  <. m ,  K >. PolyAP  k ) )
147 breq2 4029 . . . . . . . . . . . . . . . . . . 19  |-  ( g  =  k  ->  (
( K  +  1 ) MonoAP  g  <->  ( K  +  1 ) MonoAP  k
) )
148146, 147orbi12d 690 . . . . . . . . . . . . . . . . . 18  |-  ( g  =  k  ->  (
( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
)  <->  ( <. m ,  K >. PolyAP  k  \/  ( K  +  1 ) MonoAP 
k ) ) )
149148cbvralv 2766 . . . . . . . . . . . . . . . . 17  |-  ( A. g  e.  ( R  ^m  ( 1 ... w
) ) ( <.
m ,  K >. PolyAP  g  \/  ( K  + 
1 ) MonoAP  g )  <->  A. k  e.  ( R  ^m  ( 1 ... w ) ) (
<. m ,  K >. PolyAP  k  \/  ( K  + 
1 ) MonoAP  k )
)
150145, 149sylib 188 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )  /\  h  e.  ( R  ^m  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) ) )  ->  A. k  e.  ( R  ^m  ( 1 ... w ) ) (
<. m ,  K >. PolyAP  k  \/  ( K  + 
1 ) MonoAP  k )
)
151 simp2rl 1024 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )  /\  h  e.  ( R  ^m  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) ) )  -> 
v  e.  NN )
152 simp2rr 1025 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )  /\  h  e.  ( R  ^m  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) ) )  ->  A. f  e.  (
( R  ^m  (
1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f )
153 simp3 957 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )  /\  h  e.  ( R  ^m  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) ) )  ->  h  e.  ( R  ^m  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) ) )
154 ovex 5885 . . . . . . . . . . . . . . . . . 18  |-  ( 1 ... ( w  x.  ( 2  x.  v
) ) )  e. 
_V
155 elmapg 6787 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  Fin  /\  ( 1 ... (
w  x.  ( 2  x.  v ) ) )  e.  _V )  ->  ( h  e.  ( R  ^m  ( 1 ... ( w  x.  ( 2  x.  v
) ) ) )  <-> 
h : ( 1 ... ( w  x.  ( 2  x.  v
) ) ) --> R ) )
156140, 154, 155sylancl 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )  /\  h  e.  ( R  ^m  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) ) )  -> 
( h  e.  ( R  ^m  ( 1 ... ( w  x.  ( 2  x.  v
) ) ) )  <-> 
h : ( 1 ... ( w  x.  ( 2  x.  v
) ) ) --> R ) )
157153, 156mpbid 201 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )  /\  h  e.  ( R  ^m  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) ) )  ->  h : ( 1 ... ( w  x.  (
2  x.  v ) ) ) --> R )
158 oveq1 5867 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  u  ->  (
y  +  ( w  x.  ( ( x  -  1 )  +  v ) ) )  =  ( u  +  ( w  x.  (
( x  -  1 )  +  v ) ) ) )
159158fveq2d 5531 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  u  ->  (
h `  ( y  +  ( w  x.  ( ( x  - 
1 )  +  v ) ) ) )  =  ( h `  ( u  +  (
w  x.  ( ( x  -  1 )  +  v ) ) ) ) )
160159cbvmptv 4113 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( 1 ... w )  |->  ( h `
 ( y  +  ( w  x.  (
( x  -  1 )  +  v ) ) ) ) )  =  ( u  e.  ( 1 ... w
)  |->  ( h `  ( u  +  (
w  x.  ( ( x  -  1 )  +  v ) ) ) ) )
161 oveq1 5867 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  z  ->  (
x  -  1 )  =  ( z  - 
1 ) )
162161oveq1d 5875 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  z  ->  (
( x  -  1 )  +  v )  =  ( ( z  -  1 )  +  v ) )
163162oveq2d 5876 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  z  ->  (
w  x.  ( ( x  -  1 )  +  v ) )  =  ( w  x.  ( ( z  - 
1 )  +  v ) ) )
164163oveq2d 5876 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  (
u  +  ( w  x.  ( ( x  -  1 )  +  v ) ) )  =  ( u  +  ( w  x.  (
( z  -  1 )  +  v ) ) ) )
165164fveq2d 5531 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
h `  ( u  +  ( w  x.  ( ( x  - 
1 )  +  v ) ) ) )  =  ( h `  ( u  +  (
w  x.  ( ( z  -  1 )  +  v ) ) ) ) )
166165mpteq2dv 4109 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
u  e.  ( 1 ... w )  |->  ( h `  ( u  +  ( w  x.  ( ( x  - 
1 )  +  v ) ) ) ) )  =  ( u  e.  ( 1 ... w )  |->  ( h `
 ( u  +  ( w  x.  (
( z  -  1 )  +  v ) ) ) ) ) )
167160, 166syl5eq 2329 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
y  e.  ( 1 ... w )  |->  ( h `  ( y  +  ( w  x.  ( ( x  - 
1 )  +  v ) ) ) ) )  =  ( u  e.  ( 1 ... w )  |->  ( h `
 ( u  +  ( w  x.  (
( z  -  1 )  +  v ) ) ) ) ) )
168167cbvmptv 4113 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1 ... v )  |->  ( y  e.  ( 1 ... w )  |->  ( h `
 ( y  +  ( w  x.  (
( x  -  1 )  +  v ) ) ) ) ) )  =  ( z  e.  ( 1 ... v )  |->  ( u  e.  ( 1 ... w )  |->  ( h `
 ( u  +  ( w  x.  (
( z  -  1 )  +  v ) ) ) ) ) )
169140, 141, 142, 143, 144, 150, 151, 152, 157, 168vdwlem9 13038 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )  /\  h  e.  ( R  ^m  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) ) )  -> 
( <. ( m  + 
1 ) ,  K >. PolyAP 
h  \/  ( K  +  1 ) MonoAP  h
) )
1701693expia 1153 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) ) )  ->  ( h  e.  ( R  ^m  (
1 ... ( w  x.  ( 2  x.  v
) ) ) )  ->  ( <. (
m  +  1 ) ,  K >. PolyAP  h  \/  ( K  +  1 ) MonoAP  h ) ) )
171170ralrimiv 2627 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) ) )  ->  A. h  e.  ( R  ^m  ( 1 ... ( w  x.  ( 2  x.  v
) ) ) ) ( <. ( m  + 
1 ) ,  K >. PolyAP 
h  \/  ( K  +  1 ) MonoAP  h
) )
172 oveq2 5868 . . . . . . . . . . . . . . . . 17  |-  ( n  =  ( w  x.  ( 2  x.  v
) )  ->  (
1 ... n )  =  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) )
173172oveq2d 5876 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( w  x.  ( 2  x.  v
) )  ->  ( R  ^m  ( 1 ... n ) )  =  ( R  ^m  (
1 ... ( w  x.  ( 2  x.  v
) ) ) ) )
174173raleqdv 2744 . . . . . . . . . . . . . . 15  |-  ( n  =  ( w  x.  ( 2  x.  v
) )  ->  ( A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. ( m  +  1 ) ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )  <->  A. f  e.  ( R  ^m  ( 1 ... ( w  x.  (
2  x.  v ) ) ) ) (
<. ( m  +  1 ) ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) )
175 breq2 4029 . . . . . . . . . . . . . . . . 17  |-  ( f  =  h  ->  ( <. ( m  +  1 ) ,  K >. PolyAP  f  <->  <. ( m  +  1 ) ,  K >. PolyAP  h ) )
176 breq2 4029 . . . . . . . . . . . . . . . . 17  |-  ( f  =  h  ->  (
( K  +  1 ) MonoAP  f  <->  ( K  +  1 ) MonoAP  h
) )
177175, 176orbi12d 690 . . . . . . . . . . . . . . . 16  |-  ( f  =  h  ->  (
( <. ( m  + 
1 ) ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
)  <->  ( <. (
m  +  1 ) ,  K >. PolyAP  h  \/  ( K  +  1 ) MonoAP  h ) ) )
178177cbvralv 2766 . . . . . . . . . . . . . . 15  |-  ( A. f  e.  ( R  ^m  ( 1 ... (
w  x.  ( 2  x.  v ) ) ) ) ( <.
( m  +  1 ) ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )  <->  A. h  e.  ( R  ^m  ( 1 ... ( w  x.  (
2  x.  v ) ) ) ) (
<. ( m  +  1 ) ,  K >. PolyAP  h  \/  ( K  + 
1 ) MonoAP  h )
)
179174, 178syl6bb 252 . . . . . . . . . . . . . 14  |-  ( n  =  ( w  x.  ( 2  x.  v
) )  ->  ( A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. ( m  +  1 ) ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )  <->  A. h  e.  ( R  ^m  ( 1 ... ( w  x.  (
2  x.  v ) ) ) ) (
<. ( m  +  1 ) ,  K >. PolyAP  h  \/  ( K  + 
1 ) MonoAP  h )
) )
180179rspcev 2886 . . . . . . . . . . . . 13  |-  ( ( ( w  x.  (
2  x.  v ) )  e.  NN  /\  A. h  e.  ( R  ^m  ( 1 ... ( w  x.  (
2  x.  v ) ) ) ) (
<. ( m  +  1 ) ,  K >. PolyAP  h  \/  ( K  + 
1 ) MonoAP  h )
)  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) ( <. ( m  + 
1 ) ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) )
181138, 171, 180syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) )  /\  (
v  e.  NN  /\  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) ) )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. ( m  +  1 ) ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
)
182181anassrs 629 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  ( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) ) )  /\  ( v  e.  NN  /\ 
A. f  e.  ( ( R  ^m  (
1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f ) )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. ( m  +  1 ) ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
)
183182expr 598 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  NN )  /\  ( w  e.  NN  /\ 
A. g  e.  ( R  ^m  ( 1 ... w ) ) ( <. m ,  K >. PolyAP  g  \/  ( K  +  1 ) MonoAP  g
) ) )  /\  v  e.  NN )  ->  ( A. f  e.  ( ( R  ^m  ( 1 ... w
) )  ^m  (
1 ... v ) ) K MonoAP  f  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) ( <. ( m  + 
1 ) ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) ) )
184183rexlimdva 2669 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
w  e.  NN  /\  A. g  e.  ( R  ^m  ( 1 ... w ) ) (
<. m ,  K >. PolyAP  g  \/  ( K  + 
1 ) MonoAP  g )
) )  ->  ( E. v  e.  NN  A. f  e.  ( ( R  ^m  ( 1 ... w ) )  ^m  ( 1 ... v ) ) K MonoAP 
f  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) ( <. ( m  + 
1 ) ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) ) )
185131, 184mpd 14 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  NN )  /\  (
w  e.  NN  /\  A. g  e.  ( R  ^m  ( 1 ... w ) ) (
<. m ,  K >. PolyAP  g  \/  ( K  + 
1 ) MonoAP  g )
) )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) ( <. ( m  + 
1 ) ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) )
186185expr 598 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  NN )  /\  w  e.  NN )  ->  ( A. g  e.  ( R  ^m  ( 1 ... w ) ) (
<. m ,  K >. PolyAP  g  \/  ( K  + 
1 ) MonoAP  g )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. ( m  +  1 ) ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) )
187186rexlimdva 2669 . . . . . 6  |-  ( (
ph  /\  m  e.  NN )  ->  ( E. w  e.  NN  A. g  e.  ( R  ^m  ( 1 ... w
) ) ( <.
m ,  K >. PolyAP  g  \/  ( K  + 
1 ) MonoAP  g )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. ( m  +  1 ) ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) )
188116, 187syl5bi 208 . . . . 5  |-  ( (
ph  /\  m  e.  NN )  ->  ( E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n
) ) ( <.
m ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. ( m  +  1 ) ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) )
189188expcom 424 . . . 4  |-  ( m  e.  NN  ->  ( ph  ->  ( E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) ( <. m ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
)  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) ( <. ( m  + 
1 ) ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) ) ) )
190189a2d 23 . . 3  |-  ( m  e.  NN  ->  (
( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  (
1 ... n ) ) ( <. m ,  K >. PolyAP  f  \/  ( K  +  1 ) MonoAP  f
) )  ->  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. ( m  +  1 ) ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) ) )
1916, 11, 16, 21, 109, 190nnind 9766 . 2  |-  ( M  e.  NN  ->  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. M ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
) )
1921, 191mpcom 32 1  |-  ( ph  ->  E. n  e.  NN  A. f  e.  ( R  ^m  ( 1 ... n ) ) (
<. M ,  K >. PolyAP  f  \/  ( K  + 
1 ) MonoAP  f )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934   E.wex 1530    = wceq 1625    e. wcel 1686   A.wral 2545   E.wrex 2546   _Vcvv 2790    C_ wss 3154   {csn 3642   <.cop 3645   class class class wbr 4025    e. cmpt 4079   `'ccnv 4690   "cima 4694   -->wf 5253   ` cfv 5257  (class class class)co 5860    ^m cmap 6774   Fincfn 6865   1c1 8740    + caddc 8742    x. cmul 8744    <_ cle 8870    - cmin 9039   NNcn 9748   2c2 9797   NN0cn0 9967   ZZcz 10026   ZZ>=cuz 10232   ...cfz 10784  APcvdwa 13014   MonoAP cvdwm 13015   PolyAP cvdwp 13016
This theorem is referenced by:  vdwlem11  13040
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514  ax-cnex 8795  ax-resscn 8796  ax-1cn 8797  ax-icn 8798  ax-addcl 8799  ax-addrcl 8800  ax-mulcl 8801  ax-mulrcl 8802  ax-mulcom 8803  ax-addass 8804  ax-mulass 8805  ax-distr 8806  ax-i2m1 8807  ax-1ne0 8808  ax-1rid 8809  ax-rnegex 8810  ax-rrecex 8811  ax-cnre 8812  ax-pre-lttri 8813  ax-pre-lttrn 8814  ax-pre-ltadd 8815  ax-pre-mulgt0 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4307  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-we 4356  df-ord 4397  df-on 4398  df-lim 4399  df-suc 4400  df-om 4659  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-f 5261  df-f1 5262  df-fo 5263  df-f1o 5264  df-fv 5265  df-ov 5863  df-oprab 5864  df-mpt2 5865  df-1st 6124  df-2nd 6125  df-riota 6306  df-recs 6390  df-rdg 6425  df-1o 6481  df-2o 6482  df-oadd 6485  df-er 6662  df-map 6776  df-pm 6777  df-en 6866  df-dom 6867  df-sdom 6868  df-fin 6869  df-card 7574  df-cda 7796  df-pnf 8871  df-mnf 8872  df-xr 8873  df-ltxr 8874  df-le 8875  df-sub 9041  df-neg 9042  df-nn 9749  df-2 9806  df-n0 9968  df-z 10027  df-uz 10233  df-rp 10357  df-fz 10785  df-hash 11340  df-vdwap 13017  df-vdwmc 13018  df-vdwpc 13019
  Copyright terms: Public domain W3C validator