Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtocldf Structured version   Unicode version

Theorem vtocldf 2995
 Description: Implicit substitution of a class for a set variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
vtocld.1
vtocld.2
vtocld.3
vtocldf.4
vtocldf.5
vtocldf.6
Assertion
Ref Expression
vtocldf

Proof of Theorem vtocldf
StepHypRef Expression
1 vtocldf.5 . 2
2 vtocldf.6 . 2
3 vtocldf.4 . . 3
4 vtocld.2 . . . 4
54ex 424 . . 3
63, 5alrimi 1781 . 2
7 vtocld.3 . . 3
83, 7alrimi 1781 . 2
9 vtocld.1 . 2
10 vtoclgft 2994 . 2
111, 2, 6, 8, 9, 10syl221anc 1195 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wal 1549  wnf 1553   wceq 1652   wcel 1725  wnfc 2558 This theorem is referenced by:  vtocld  2996  iota2df  5434  riotasv2d  6586 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950
 Copyright terms: Public domain W3C validator