Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispi2 Structured version   Unicode version

Theorem wallispi2 27789
Description: An alternative version of Wallis' formula for π ; this second formula uses factorials and it is later used to proof Stirling's approximation formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
wallispi2.1  |-  V  =  ( n  e.  NN  |->  ( ( ( ( 2 ^ ( 4  x.  n ) )  x.  ( ( ! `
 n ) ^
4 ) )  / 
( ( ! `  ( 2  x.  n
) ) ^ 2 ) )  /  (
( 2  x.  n
)  +  1 ) ) )
Assertion
Ref Expression
wallispi2  |-  V  ~~>  ( pi 
/  2 )

Proof of Theorem wallispi2
Dummy variables  k  m  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . 2  |-  ( k  e.  NN  |->  ( ( ( 2  x.  k
)  /  ( ( 2  x.  k )  -  1 ) )  x.  ( ( 2  x.  k )  / 
( ( 2  x.  k )  +  1 ) ) ) )  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  /  ( ( 2  x.  k )  - 
1 ) )  x.  ( ( 2  x.  k )  /  (
( 2  x.  k
)  +  1 ) ) ) )
2 ax-1cn 9040 . . . . . . 7  |-  1  e.  CC
32a1i 11 . . . . . 6  |-  ( n  e.  NN  ->  1  e.  CC )
4 2cn 10062 . . . . . . . . 9  |-  2  e.  CC
54a1i 11 . . . . . . . 8  |-  ( n  e.  NN  ->  2  e.  CC )
6 nncn 10000 . . . . . . . 8  |-  ( n  e.  NN  ->  n  e.  CC )
75, 6mulcld 9100 . . . . . . 7  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  CC )
87, 3addcld 9099 . . . . . 6  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  CC )
9 elnnuz 10514 . . . . . . . 8  |-  ( n  e.  NN  <->  n  e.  ( ZZ>= `  1 )
)
109biimpi 187 . . . . . . 7  |-  ( n  e.  NN  ->  n  e.  ( ZZ>= `  1 )
)
11 eqidd 2436 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... n )  ->  (
k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) )  =  ( k  e.  NN  |->  ( ( ( 2  x.  k
) ^ 4 )  /  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  - 
1 ) ) ^
2 ) ) ) )
12 simpr 448 . . . . . . . . . . . . 13  |-  ( ( m  e.  ( 1 ... n )  /\  k  =  m )  ->  k  =  m )
1312oveq2d 6089 . . . . . . . . . . . 12  |-  ( ( m  e.  ( 1 ... n )  /\  k  =  m )  ->  ( 2  x.  k
)  =  ( 2  x.  m ) )
1413oveq1d 6088 . . . . . . . . . . 11  |-  ( ( m  e.  ( 1 ... n )  /\  k  =  m )  ->  ( ( 2  x.  k ) ^ 4 )  =  ( ( 2  x.  m ) ^ 4 ) )
1513oveq1d 6088 . . . . . . . . . . . . 13  |-  ( ( m  e.  ( 1 ... n )  /\  k  =  m )  ->  ( ( 2  x.  k )  -  1 )  =  ( ( 2  x.  m )  -  1 ) )
1613, 15oveq12d 6091 . . . . . . . . . . . 12  |-  ( ( m  e.  ( 1 ... n )  /\  k  =  m )  ->  ( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) )  =  ( ( 2  x.  m )  x.  ( ( 2  x.  m )  - 
1 ) ) )
1716oveq1d 6088 . . . . . . . . . . 11  |-  ( ( m  e.  ( 1 ... n )  /\  k  =  m )  ->  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 )  =  ( ( ( 2  x.  m
)  x.  ( ( 2  x.  m )  -  1 ) ) ^ 2 ) )
1814, 17oveq12d 6091 . . . . . . . . . 10  |-  ( ( m  e.  ( 1 ... n )  /\  k  =  m )  ->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) )  =  ( ( ( 2  x.  m
) ^ 4 )  /  ( ( ( 2  x.  m )  x.  ( ( 2  x.  m )  - 
1 ) ) ^
2 ) ) )
19 elfznn 11072 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... n )  ->  m  e.  NN )
204a1i 11 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 ... n )  ->  2  e.  CC )
2119nncnd 10008 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 ... n )  ->  m  e.  CC )
2220, 21mulcld 9100 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... n )  ->  (
2  x.  m )  e.  CC )
23 4nn0 10232 . . . . . . . . . . . . 13  |-  4  e.  NN0
2423a1i 11 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... n )  ->  4  e.  NN0 )
2522, 24expcld 11515 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... n )  ->  (
( 2  x.  m
) ^ 4 )  e.  CC )
262a1i 11 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... n )  ->  1  e.  CC )
2722, 26subcld 9403 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 ... n )  ->  (
( 2  x.  m
)  -  1 )  e.  CC )
2822, 27mulcld 9100 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... n )  ->  (
( 2  x.  m
)  x.  ( ( 2  x.  m )  -  1 ) )  e.  CC )
2928sqcld 11513 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... n )  ->  (
( ( 2  x.  m )  x.  (
( 2  x.  m
)  -  1 ) ) ^ 2 )  e.  CC )
30 2ne0 10075 . . . . . . . . . . . . . . 15  |-  2  =/=  0
3130a1i 11 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... n )  ->  2  =/=  0 )
3219nnne0d 10036 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... n )  ->  m  =/=  0 )
3320, 21, 31, 32mulne0d 9666 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 ... n )  ->  (
2  x.  m )  =/=  0 )
34 1re 9082 . . . . . . . . . . . . . . . 16  |-  1  e.  RR
3534a1i 11 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 1 ... n )  ->  1  e.  RR )
36 2re 10061 . . . . . . . . . . . . . . . . . 18  |-  2  e.  RR
3736a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... n )  ->  2  e.  RR )
3837, 35remulcld 9108 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... n )  ->  (
2  x.  1 )  e.  RR )
3919nnred 10007 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... n )  ->  m  e.  RR )
4037, 39remulcld 9108 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... n )  ->  (
2  x.  m )  e.  RR )
41 1lt2 10134 . . . . . . . . . . . . . . . . . 18  |-  1  <  2
4241a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... n )  ->  1  <  2 )
434mulid1i 9084 . . . . . . . . . . . . . . . . 17  |-  ( 2  x.  1 )  =  2
4442, 43syl6breqr 4244 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... n )  ->  1  <  ( 2  x.  1 ) )
45 0re 9083 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
46 2pos 10074 . . . . . . . . . . . . . . . . . . 19  |-  0  <  2
4745, 36, 46ltleii 9188 . . . . . . . . . . . . . . . . . 18  |-  0  <_  2
4847a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... n )  ->  0  <_  2 )
49 elfzle1 11052 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( 1 ... n )  ->  1  <_  m )
5035, 39, 37, 48, 49lemul2ad 9943 . . . . . . . . . . . . . . . 16  |-  ( m  e.  ( 1 ... n )  ->  (
2  x.  1 )  <_  ( 2  x.  m ) )
5135, 38, 40, 44, 50ltletrd 9222 . . . . . . . . . . . . . . 15  |-  ( m  e.  ( 1 ... n )  ->  1  <  ( 2  x.  m
) )
5235, 51gtned 9200 . . . . . . . . . . . . . 14  |-  ( m  e.  ( 1 ... n )  ->  (
2  x.  m )  =/=  1 )
5322, 26, 52subne0d 9412 . . . . . . . . . . . . 13  |-  ( m  e.  ( 1 ... n )  ->  (
( 2  x.  m
)  -  1 )  =/=  0 )
5422, 27, 33, 53mulne0d 9666 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... n )  ->  (
( 2  x.  m
)  x.  ( ( 2  x.  m )  -  1 ) )  =/=  0 )
55 2z 10304 . . . . . . . . . . . . 13  |-  2  e.  ZZ
5655a1i 11 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... n )  ->  2  e.  ZZ )
5728, 54, 56expne0d 11521 . . . . . . . . . . 11  |-  ( m  e.  ( 1 ... n )  ->  (
( ( 2  x.  m )  x.  (
( 2  x.  m
)  -  1 ) ) ^ 2 )  =/=  0 )
5825, 29, 57divcld 9782 . . . . . . . . . 10  |-  ( m  e.  ( 1 ... n )  ->  (
( ( 2  x.  m ) ^ 4 )  /  ( ( ( 2  x.  m
)  x.  ( ( 2  x.  m )  -  1 ) ) ^ 2 ) )  e.  CC )
5911, 18, 19, 58fvmptd 5802 . . . . . . . . 9  |-  ( m  e.  ( 1 ... n )  ->  (
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) `  m
)  =  ( ( ( 2  x.  m
) ^ 4 )  /  ( ( ( 2  x.  m )  x.  ( ( 2  x.  m )  - 
1 ) ) ^
2 ) ) )
6059, 58eqeltrd 2509 . . . . . . . 8  |-  ( m  e.  ( 1 ... n )  ->  (
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) `  m
)  e.  CC )
6160adantl 453 . . . . . . 7  |-  ( ( n  e.  NN  /\  m  e.  ( 1 ... n ) )  ->  ( ( k  e.  NN  |->  ( ( ( 2  x.  k
) ^ 4 )  /  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  - 
1 ) ) ^
2 ) ) ) `
 m )  e.  CC )
62 mulcl 9066 . . . . . . . 8  |-  ( ( m  e.  CC  /\  w  e.  CC )  ->  ( m  x.  w
)  e.  CC )
6362adantl 453 . . . . . . 7  |-  ( ( n  e.  NN  /\  ( m  e.  CC  /\  w  e.  CC ) )  ->  ( m  x.  w )  e.  CC )
6410, 61, 63seqcl 11335 . . . . . 6  |-  ( n  e.  NN  ->  (  seq  1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  n )  e.  CC )
65 2nn 10125 . . . . . . . . . 10  |-  2  e.  NN
6665a1i 11 . . . . . . . . 9  |-  ( n  e.  NN  ->  2  e.  NN )
67 id 20 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  NN )
6866, 67nnmulcld 10039 . . . . . . . 8  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  NN )
6968peano2nnd 10009 . . . . . . 7  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  NN )
7069nnne0d 10036 . . . . . 6  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  =/=  0 )
713, 8, 64, 70div32d 9805 . . . . 5  |-  ( n  e.  NN  ->  (
( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  (  seq  1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  n ) )  =  ( 1  x.  (
(  seq  1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k
) ^ 4 )  /  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  - 
1 ) ) ^
2 ) ) ) ) `  n )  /  ( ( 2  x.  n )  +  1 ) ) ) )
7264, 8, 70divcld 9782 . . . . . 6  |-  ( n  e.  NN  ->  (
(  seq  1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k
) ^ 4 )  /  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  - 
1 ) ) ^
2 ) ) ) ) `  n )  /  ( ( 2  x.  n )  +  1 ) )  e.  CC )
7372mulid2d 9098 . . . . 5  |-  ( n  e.  NN  ->  (
1  x.  ( (  seq  1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  / 
( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `
 n )  / 
( ( 2  x.  n )  +  1 ) ) )  =  ( (  seq  1
(  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `  n
)  /  ( ( 2  x.  n )  +  1 ) ) )
74 wallispi2lem2 27788 . . . . . 6  |-  ( n  e.  NN  ->  (  seq  1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  n )  =  ( ( ( 2 ^ ( 4  x.  n
) )  x.  (
( ! `  n
) ^ 4 ) )  /  ( ( ! `  ( 2  x.  n ) ) ^ 2 ) ) )
7574oveq1d 6088 . . . . 5  |-  ( n  e.  NN  ->  (
(  seq  1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k
) ^ 4 )  /  ( ( ( 2  x.  k )  x.  ( ( 2  x.  k )  - 
1 ) ) ^
2 ) ) ) ) `  n )  /  ( ( 2  x.  n )  +  1 ) )  =  ( ( ( ( 2 ^ ( 4  x.  n ) )  x.  ( ( ! `
 n ) ^
4 ) )  / 
( ( ! `  ( 2  x.  n
) ) ^ 2 ) )  /  (
( 2  x.  n
)  +  1 ) ) )
7671, 73, 753eqtrd 2471 . . . 4  |-  ( n  e.  NN  ->  (
( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  (  seq  1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  n ) )  =  ( ( ( ( 2 ^ ( 4  x.  n ) )  x.  ( ( ! `
 n ) ^
4 ) )  / 
( ( ! `  ( 2  x.  n
) ) ^ 2 ) )  /  (
( 2  x.  n
)  +  1 ) ) )
7776mpteq2ia 4283 . . 3  |-  ( n  e.  NN  |->  ( ( 1  /  ( ( 2  x.  n )  +  1 ) )  x.  (  seq  1
(  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k ) ^ 4 )  /  ( ( ( 2  x.  k
)  x.  ( ( 2  x.  k )  -  1 ) ) ^ 2 ) ) ) ) `  n
) ) )  =  ( n  e.  NN  |->  ( ( ( ( 2 ^ ( 4  x.  n ) )  x.  ( ( ! `
 n ) ^
4 ) )  / 
( ( ! `  ( 2  x.  n
) ) ^ 2 ) )  /  (
( 2  x.  n
)  +  1 ) ) )
78 wallispi2lem1 27787 . . . 4  |-  ( n  e.  NN  ->  (  seq  1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) ) ) ) `  n )  =  ( ( 1  /  (
( 2  x.  n
)  +  1 ) )  x.  (  seq  1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  n ) ) )
7978mpteq2ia 4283 . . 3  |-  ( n  e.  NN  |->  (  seq  1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) ) ) ) `  n ) )  =  ( n  e.  NN  |->  ( ( 1  / 
( ( 2  x.  n )  +  1 ) )  x.  (  seq  1 (  x.  , 
( k  e.  NN  |->  ( ( ( 2  x.  k ) ^
4 )  /  (
( ( 2  x.  k )  x.  (
( 2  x.  k
)  -  1 ) ) ^ 2 ) ) ) ) `  n ) ) )
80 wallispi2.1 . . 3  |-  V  =  ( n  e.  NN  |->  ( ( ( ( 2 ^ ( 4  x.  n ) )  x.  ( ( ! `
 n ) ^
4 ) )  / 
( ( ! `  ( 2  x.  n
) ) ^ 2 ) )  /  (
( 2  x.  n
)  +  1 ) ) )
8177, 79, 803eqtr4ri 2466 . 2  |-  V  =  ( n  e.  NN  |->  (  seq  1 (  x.  ,  ( k  e.  NN  |->  ( ( ( 2  x.  k )  /  ( ( 2  x.  k )  - 
1 ) )  x.  ( ( 2  x.  k )  /  (
( 2  x.  k
)  +  1 ) ) ) ) ) `
 n ) )
821, 81wallispi 27786 1  |-  V  ~~>  ( pi 
/  2 )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    < clt 9112    <_ cle 9113    - cmin 9283    / cdiv 9669   NNcn 9992   2c2 10041   4c4 10043   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035    seq cseq 11315   ^cexp 11374   !cfa 11558    ~~> cli 12270   picpi 12661
This theorem is referenced by:  stirlinglem15  27804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cc 8307  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-ofr 6298  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-omul 6721  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-acn 7821  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ioc 10913  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-fac 11559  df-bc 11586  df-hash 11611  df-shft 11874  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275  df-sum 12472  df-ef 12662  df-sin 12664  df-cos 12665  df-pi 12667  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-lp 17192  df-perf 17193  df-cn 17283  df-cnp 17284  df-haus 17371  df-cmp 17442  df-tx 17586  df-hmeo 17779  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900  df-ovol 19353  df-vol 19354  df-mbf 19504  df-itg1 19505  df-itg2 19506  df-ibl 19507  df-itg 19508  df-0p 19554  df-limc 19745  df-dv 19746
  Copyright terms: Public domain W3C validator