Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wallispilem5 Structured version   Unicode version

Theorem wallispilem5 27785
Description: The sequence  H converges to 1. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
wallispilem5.1  |-  F  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) ) )
wallispilem5.2  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
wallispilem5.3  |-  G  =  ( n  e.  NN  |->  ( ( I `  ( 2  x.  n
) )  /  (
I `  ( (
2  x.  n )  +  1 ) ) ) )
wallispilem5.4  |-  H  =  ( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) )
wallispilem5.5  |-  L  =  ( n  e.  NN  |->  ( ( ( 2  x.  n )  +  1 )  /  (
2  x.  n ) ) )
Assertion
Ref Expression
wallispilem5  |-  H  ~~>  1
Distinct variable groups:    k, n, x    x, F    k, G    k, L
Allowed substitution hints:    F( k, n)    G( x, n)    H( x, k, n)    I( x, k, n)    L( x, n)

Proof of Theorem wallispilem5
StepHypRef Expression
1 wallispilem5.1 . . 3  |-  F  =  ( k  e.  NN  |->  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  -  1 ) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) ) )
2 wallispilem5.2 . . 3  |-  I  =  ( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
3 wallispilem5.3 . . 3  |-  G  =  ( n  e.  NN  |->  ( ( I `  ( 2  x.  n
) )  /  (
I `  ( (
2  x.  n )  +  1 ) ) ) )
4 wallispilem5.4 . . 3  |-  H  =  ( n  e.  NN  |->  ( ( pi  / 
2 )  x.  (
1  /  (  seq  1 (  x.  ,  F ) `  n
) ) ) )
51, 2, 3, 4wallispilem4 27784 . 2  |-  G  =  H
6 nnuz 10513 . . . 4  |-  NN  =  ( ZZ>= `  1 )
7 1z 10303 . . . . 5  |-  1  e.  ZZ
87a1i 11 . . . 4  |-  (  T. 
->  1  e.  ZZ )
9 wallispilem5.5 . . . . 5  |-  L  =  ( n  e.  NN  |->  ( ( ( 2  x.  n )  +  1 )  /  (
2  x.  n ) ) )
10 2cn 10062 . . . . . 6  |-  2  e.  CC
1110a1i 11 . . . . 5  |-  (  T. 
->  2  e.  CC )
12 2ne0 10075 . . . . . 6  |-  2  =/=  0
1312a1i 11 . . . . 5  |-  (  T. 
->  2  =/=  0
)
148zcnd 10368 . . . . 5  |-  (  T. 
->  1  e.  CC )
159, 11, 13, 14clim1fr1 27694 . . . 4  |-  (  T. 
->  L  ~~>  1 )
16 nnex 9998 . . . . . . 7  |-  NN  e.  _V
1716mptex 5958 . . . . . 6  |-  ( n  e.  NN  |->  ( ( I `  ( 2  x.  n ) )  /  ( I `  ( ( 2  x.  n )  +  1 ) ) ) )  e.  _V
183, 17eqeltri 2505 . . . . 5  |-  G  e. 
_V
1918a1i 11 . . . 4  |-  (  T. 
->  G  e.  _V )
20 2nn0 10230 . . . . . . . . . . . 12  |-  2  e.  NN0
2120a1i 11 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  2  e.  NN0 )
22 nnnn0 10220 . . . . . . . . . . 11  |-  ( n  e.  NN  ->  n  e.  NN0 )
2321, 22nn0mulcld 10271 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  NN0 )
24 1nn0 10229 . . . . . . . . . . 11  |-  1  e.  NN0
2524a1i 11 . . . . . . . . . 10  |-  ( n  e.  NN  ->  1  e.  NN0 )
2623, 25nn0addcld 10270 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  NN0 )
2726nn0red 10267 . . . . . . . 8  |-  ( n  e.  NN  ->  (
( 2  x.  n
)  +  1 )  e.  RR )
2823nn0red 10267 . . . . . . . 8  |-  ( n  e.  NN  ->  (
2  x.  n )  e.  RR )
2910a1i 11 . . . . . . . . 9  |-  ( n  e.  NN  ->  2  e.  CC )
30 nncn 10000 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  CC )
3112a1i 11 . . . . . . . . 9  |-  ( n  e.  NN  ->  2  =/=  0 )
32 nnne0 10024 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  =/=  0 )
3329, 30, 31, 32mulne0d 9666 . . . . . . . 8  |-  ( n  e.  NN  ->  (
2  x.  n )  =/=  0 )
3427, 28, 33redivcld 9834 . . . . . . 7  |-  ( n  e.  NN  ->  (
( ( 2  x.  n )  +  1 )  /  ( 2  x.  n ) )  e.  RR )
359, 34fmpti 5884 . . . . . 6  |-  L : NN
--> RR
3635a1i 11 . . . . 5  |-  (  T. 
->  L : NN --> RR )
3736ffvelrnda 5862 . . . 4  |-  ( (  T.  /\  k  e.  NN )  ->  ( L `  k )  e.  RR )
382wallispilem3 27783 . . . . . . . . . 10  |-  ( ( 2  x.  n )  e.  NN0  ->  ( I `
 ( 2  x.  n ) )  e.  RR+ )
3923, 38syl 16 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
I `  ( 2  x.  n ) )  e.  RR+ )
4039rpred 10640 . . . . . . . 8  |-  ( n  e.  NN  ->  (
I `  ( 2  x.  n ) )  e.  RR )
412wallispilem3 27783 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  e.  NN0  ->  ( I `
 ( ( 2  x.  n )  +  1 ) )  e.  RR+ )
4226, 41syl 16 . . . . . . . 8  |-  ( n  e.  NN  ->  (
I `  ( (
2  x.  n )  +  1 ) )  e.  RR+ )
4340, 42rerpdivcld 10667 . . . . . . 7  |-  ( n  e.  NN  ->  (
( I `  (
2  x.  n ) )  /  ( I `
 ( ( 2  x.  n )  +  1 ) ) )  e.  RR )
443, 43fmpti 5884 . . . . . 6  |-  G : NN
--> RR
4544a1i 11 . . . . 5  |-  (  T. 
->  G : NN --> RR )
4645ffvelrnda 5862 . . . 4  |-  ( (  T.  /\  k  e.  NN )  ->  ( G `  k )  e.  RR )
4720a1i 11 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  2  e.  NN0 )
48 nnnn0 10220 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  e.  NN0 )
4947, 48nn0mulcld 10271 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  NN0 )
502wallispilem3 27783 . . . . . . . . . 10  |-  ( ( 2  x.  k )  e.  NN0  ->  ( I `
 ( 2  x.  k ) )  e.  RR+ )
5149, 50syl 16 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( 2  x.  k ) )  e.  RR+ )
5251rpred 10640 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( 2  x.  k ) )  e.  RR )
53 2nn 10125 . . . . . . . . . . . . 13  |-  2  e.  NN
5453a1i 11 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  2  e.  NN )
55 id 20 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  NN )
5654, 55nnmulcld 10039 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  NN )
57 nnm1nn0 10253 . . . . . . . . . . 11  |-  ( ( 2  x.  k )  e.  NN  ->  (
( 2  x.  k
)  -  1 )  e.  NN0 )
5856, 57syl 16 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  -  1 )  e.  NN0 )
592wallispilem3 27783 . . . . . . . . . 10  |-  ( ( ( 2  x.  k
)  -  1 )  e.  NN0  ->  ( I `
 ( ( 2  x.  k )  - 
1 ) )  e.  RR+ )
6058, 59syl 16 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  -  1 ) )  e.  RR+ )
6160rpred 10640 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  -  1 ) )  e.  RR )
6224a1i 11 . . . . . . . . . 10  |-  ( k  e.  NN  ->  1  e.  NN0 )
6349, 62nn0addcld 10270 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  NN0 )
642wallispilem3 27783 . . . . . . . . 9  |-  ( ( ( 2  x.  k
)  +  1 )  e.  NN0  ->  ( I `
 ( ( 2  x.  k )  +  1 ) )  e.  RR+ )
6563, 64syl 16 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  e.  RR+ )
6610a1i 11 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  2  e.  CC )
67 nncn 10000 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  k  e.  CC )
6866, 67mulcld 9100 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  CC )
69 ax-1cn 9040 . . . . . . . . . . . 12  |-  1  e.  CC
7069a1i 11 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  1  e.  CC )
7168, 70npcand 9407 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  -  1 )  +  1 )  =  ( 2  x.  k ) )
7271fveq2d 5724 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( (
( 2  x.  k
)  -  1 )  +  1 ) )  =  ( I `  ( 2  x.  k
) ) )
732, 58wallispilem1 27781 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( (
( 2  x.  k
)  -  1 )  +  1 ) )  <_  ( I `  ( ( 2  x.  k )  -  1 ) ) )
7472, 73eqbrtrrd 4226 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( 2  x.  k ) )  <_ 
( I `  (
( 2  x.  k
)  -  1 ) ) )
7552, 61, 65, 74lediv1dd 10694 . . . . . . 7  |-  ( k  e.  NN  ->  (
( I `  (
2  x.  k ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  <_  ( ( I `
 ( ( 2  x.  k )  - 
1 ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
7668, 70addcld 9099 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  CC )
7712a1i 11 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  2  =/=  0 )
78 nnne0 10024 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  k  =/=  0 )
7966, 67, 77, 78mulne0d 9666 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
2  x.  k )  =/=  0 )
8076, 68, 79divcld 9782 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  +  1 )  /  ( 2  x.  k ) )  e.  CC )
8165rpcnd 10642 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  e.  CC )
8265rpne0d 10645 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  =/=  0 )
8380, 81, 82divcan4d 9788 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) )  x.  (
I `  ( (
2  x.  k )  +  1 ) ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) ) )
84 2re 10061 . . . . . . . . . . . . . . . 16  |-  2  e.  RR
8584a1i 11 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  2  e.  RR )
86 nnre 9999 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  k  e.  RR )
8785, 86remulcld 9108 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  (
2  x.  k )  e.  RR )
88 1re 9082 . . . . . . . . . . . . . . . . 17  |-  1  e.  RR
8988a1i 11 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  1  e.  RR )
9087, 89readdcld 9107 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  RR )
9147nn0ge0d 10269 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  0  <_  2 )
92 nnge1 10018 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  1  <_  k )
9385, 86, 91, 92lemulge11d 9940 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  2  <_  ( 2  x.  k
) )
9487ltp1d 9933 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  (
2  x.  k )  <  ( ( 2  x.  k )  +  1 ) )
9585, 87, 90, 93, 94lelttrd 9220 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  2  <  ( ( 2  x.  k )  +  1 ) )
9685, 90, 95ltled 9213 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  2  <_  ( ( 2  x.  k )  +  1 ) )
9747nn0zd 10365 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  2  e.  ZZ )
9863nn0zd 10365 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  ZZ )
99 eluz 10491 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  e.  ZZ )  ->  ( ( ( 2  x.  k )  +  1 )  e.  ( ZZ>= `  2 )  <->  2  <_  ( ( 2  x.  k )  +  1 ) ) )
10097, 98, 99syl2anc 643 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  +  1 )  e.  ( ZZ>= ` 
2 )  <->  2  <_  ( ( 2  x.  k
)  +  1 ) ) )
10196, 100mpbird 224 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  ( ZZ>= `  2
) )
1022, 101itgsinexp 27716 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  =  ( ( ( ( ( 2  x.  k )  +  1 )  -  1 )  /  ( ( 2  x.  k )  +  1 ) )  x.  ( I `  (
( ( 2  x.  k )  +  1 )  -  2 ) ) ) )
10368, 70pncand 9404 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  +  1 )  -  1 )  =  ( 2  x.  k ) )
104103oveq1d 6088 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
( ( ( 2  x.  k )  +  1 )  -  1 )  /  ( ( 2  x.  k )  +  1 ) )  =  ( ( 2  x.  k )  / 
( ( 2  x.  k )  +  1 ) ) )
105 2m1e1 10087 . . . . . . . . . . . . . . . . . 18  |-  ( 2  -  1 )  =  1
106105eqcomi 2439 . . . . . . . . . . . . . . . . 17  |-  1  =  ( 2  -  1 )
107106a1i 11 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  1  =  ( 2  -  1 ) )
108107oveq2d 6089 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  -  1 )  =  ( ( 2  x.  k )  -  ( 2  -  1 ) ) )
10968, 66, 70subsub3d 9433 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  -  ( 2  -  1 ) )  =  ( ( ( 2  x.  k )  +  1 )  - 
2 ) )
110108, 109eqtr2d 2468 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  +  1 )  -  2 )  =  ( ( 2  x.  k )  - 
1 ) )
111110fveq2d 5724 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
I `  ( (
( 2  x.  k
)  +  1 )  -  2 ) )  =  ( I `  ( ( 2  x.  k )  -  1 ) ) )
112104, 111oveq12d 6091 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  - 
1 )  /  (
( 2  x.  k
)  +  1 ) )  x.  ( I `
 ( ( ( 2  x.  k )  +  1 )  - 
2 ) ) )  =  ( ( ( 2  x.  k )  /  ( ( 2  x.  k )  +  1 ) )  x.  ( I `  (
( 2  x.  k
)  -  1 ) ) ) )
113102, 112eqtrd 2467 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  =  ( ( ( 2  x.  k )  /  ( ( 2  x.  k )  +  1 ) )  x.  ( I `  (
( 2  x.  k
)  -  1 ) ) ) )
114113oveq2d 6089 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( ( ( 2  x.  k )  +  1 )  /  (
2  x.  k ) )  x.  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  =  ( ( ( ( 2  x.  k
)  +  1 )  /  ( 2  x.  k ) )  x.  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  +  1 ) )  x.  (
I `  ( (
2  x.  k )  -  1 ) ) ) ) )
11556peano2nnd 10009 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  e.  NN )
116115nnne0d 10036 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  +  1 )  =/=  0 )
11768, 76, 116divcld 9782 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) )  e.  CC )
11860rpcnd 10642 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  -  1 ) )  e.  CC )
11980, 117, 118mulassd 9103 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) )  x.  ( I `
 ( ( 2  x.  k )  - 
1 ) ) )  =  ( ( ( ( 2  x.  k
)  +  1 )  /  ( 2  x.  k ) )  x.  ( ( ( 2  x.  k )  / 
( ( 2  x.  k )  +  1 ) )  x.  (
I `  ( (
2  x.  k )  -  1 ) ) ) ) )
12076, 68, 116, 79divcan6d 9801 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( ( ( 2  x.  k )  +  1 )  /  (
2  x.  k ) )  x.  ( ( 2  x.  k )  /  ( ( 2  x.  k )  +  1 ) ) )  =  1 )
121120oveq1d 6088 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) )  x.  ( I `
 ( ( 2  x.  k )  - 
1 ) ) )  =  ( 1  x.  ( I `  (
( 2  x.  k
)  -  1 ) ) ) )
122118mulid2d 9098 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
1  x.  ( I `
 ( ( 2  x.  k )  - 
1 ) ) )  =  ( I `  ( ( 2  x.  k )  -  1 ) ) )
123121, 122eqtrd 2467 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) )  x.  (
( 2  x.  k
)  /  ( ( 2  x.  k )  +  1 ) ) )  x.  ( I `
 ( ( 2  x.  k )  - 
1 ) ) )  =  ( I `  ( ( 2  x.  k )  -  1 ) ) )
124114, 119, 1233eqtr2d 2473 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( ( ( 2  x.  k )  +  1 )  /  (
2  x.  k ) )  x.  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  =  ( I `  ( ( 2  x.  k )  -  1 ) ) )
125124oveq1d 6088 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) )  x.  (
I `  ( (
2  x.  k )  +  1 ) ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  =  ( ( I `
 ( ( 2  x.  k )  - 
1 ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
12683, 125eqtr3d 2469 . . . . . . 7  |-  ( k  e.  NN  ->  (
( ( 2  x.  k )  +  1 )  /  ( 2  x.  k ) )  =  ( ( I `
 ( ( 2  x.  k )  - 
1 ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
12775, 126breqtrrd 4230 . . . . . 6  |-  ( k  e.  NN  ->  (
( I `  (
2  x.  k ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  <_  ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) ) )
12851, 65rpdivcld 10657 . . . . . . 7  |-  ( k  e.  NN  ->  (
( I `  (
2  x.  k ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  e.  RR+ )
129 nfcv 2571 . . . . . . . 8  |-  F/_ n
k
130 nfmpt1 4290 . . . . . . . . . . 11  |-  F/_ n
( n  e.  NN0  |->  S. ( 0 (,) pi ) ( ( sin `  x ) ^ n
)  _d x )
1312, 130nfcxfr 2568 . . . . . . . . . 10  |-  F/_ n I
132 nfcv 2571 . . . . . . . . . 10  |-  F/_ n
( 2  x.  k
)
133131, 132nffv 5727 . . . . . . . . 9  |-  F/_ n
( I `  (
2  x.  k ) )
134 nfcv 2571 . . . . . . . . 9  |-  F/_ n  /
135 nfcv 2571 . . . . . . . . . 10  |-  F/_ n
( ( 2  x.  k )  +  1 )
136131, 135nffv 5727 . . . . . . . . 9  |-  F/_ n
( I `  (
( 2  x.  k
)  +  1 ) )
137133, 134, 136nfov 6096 . . . . . . . 8  |-  F/_ n
( ( I `  ( 2  x.  k
) )  /  (
I `  ( (
2  x.  k )  +  1 ) ) )
138 oveq2 6081 . . . . . . . . . 10  |-  ( n  =  k  ->  (
2  x.  n )  =  ( 2  x.  k ) )
139138fveq2d 5724 . . . . . . . . 9  |-  ( n  =  k  ->  (
I `  ( 2  x.  n ) )  =  ( I `  (
2  x.  k ) ) )
140138oveq1d 6088 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( 2  x.  n
)  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
141140fveq2d 5724 . . . . . . . . 9  |-  ( n  =  k  ->  (
I `  ( (
2  x.  n )  +  1 ) )  =  ( I `  ( ( 2  x.  k )  +  1 ) ) )
142139, 141oveq12d 6091 . . . . . . . 8  |-  ( n  =  k  ->  (
( I `  (
2  x.  n ) )  /  ( I `
 ( ( 2  x.  n )  +  1 ) ) )  =  ( ( I `
 ( 2  x.  k ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
143129, 137, 142, 3fvmptf 5813 . . . . . . 7  |-  ( ( k  e.  NN  /\  ( ( I `  ( 2  x.  k
) )  /  (
I `  ( (
2  x.  k )  +  1 ) ) )  e.  RR+ )  ->  ( G `  k
)  =  ( ( I `  ( 2  x.  k ) )  /  ( I `  ( ( 2  x.  k )  +  1 ) ) ) )
144128, 143mpdan 650 . . . . . 6  |-  ( k  e.  NN  ->  ( G `  k )  =  ( ( I `
 ( 2  x.  k ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
1459a1i 11 . . . . . . 7  |-  ( k  e.  NN  ->  L  =  ( n  e.  NN  |->  ( ( ( 2  x.  n )  +  1 )  / 
( 2  x.  n
) ) ) )
146 simpr 448 . . . . . . . . . 10  |-  ( ( k  e.  NN  /\  n  =  k )  ->  n  =  k )
147146oveq2d 6089 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( 2  x.  n
)  =  ( 2  x.  k ) )
148147oveq1d 6088 . . . . . . . 8  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( ( 2  x.  n )  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
149148, 147oveq12d 6091 . . . . . . 7  |-  ( ( k  e.  NN  /\  n  =  k )  ->  ( ( ( 2  x.  n )  +  1 )  /  (
2  x.  n ) )  =  ( ( ( 2  x.  k
)  +  1 )  /  ( 2  x.  k ) ) )
150145, 149, 55, 80fvmptd 5802 . . . . . 6  |-  ( k  e.  NN  ->  ( L `  k )  =  ( ( ( 2  x.  k )  +  1 )  / 
( 2  x.  k
) ) )
151127, 144, 1503brtr4d 4234 . . . . 5  |-  ( k  e.  NN  ->  ( G `  k )  <_  ( L `  k
) )
152151adantl 453 . . . 4  |-  ( (  T.  /\  k  e.  NN )  ->  ( G `  k )  <_  ( L `  k
) )
15381, 82dividd 9780 . . . . . . 7  |-  ( k  e.  NN  ->  (
( I `  (
( 2  x.  k
)  +  1 ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  =  1 )
15465rpred 10640 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  e.  RR )
1552, 49wallispilem1 27781 . . . . . . . 8  |-  ( k  e.  NN  ->  (
I `  ( (
2  x.  k )  +  1 ) )  <_  ( I `  ( 2  x.  k
) ) )
156154, 52, 65, 155lediv1dd 10694 . . . . . . 7  |-  ( k  e.  NN  ->  (
( I `  (
( 2  x.  k
)  +  1 ) )  /  ( I `
 ( ( 2  x.  k )  +  1 ) ) )  <_  ( ( I `
 ( 2  x.  k ) )  / 
( I `  (
( 2  x.  k
)  +  1 ) ) ) )
157153, 156eqbrtrrd 4226 . . . . . 6  |-  ( k  e.  NN  ->  1  <_  ( ( I `  ( 2  x.  k
) )  /  (
I `  ( (
2  x.  k )  +  1 ) ) ) )
158157, 144breqtrrd 4230 . . . . 5  |-  ( k  e.  NN  ->  1  <_  ( G `  k
) )
159158adantl 453 . . . 4  |-  ( (  T.  /\  k  e.  NN )  ->  1  <_  ( G `  k
) )
1606, 8, 15, 19, 37, 46, 152, 159climsqz2 12427 . . 3  |-  (  T. 
->  G  ~~>  1 )
161160trud 1332 . 2  |-  G  ~~>  1
1625, 161eqbrtrri 4225 1  |-  H  ~~>  1
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    T. wtru 1325    = wceq 1652    e. wcel 1725    =/= wne 2598   _Vcvv 2948   class class class wbr 4204    e. cmpt 4258   -->wf 5442   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    <_ cle 9113    - cmin 9283    / cdiv 9669   NNcn 9992   2c2 10041   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   RR+crp 10604   (,)cioo 10908    seq cseq 11315   ^cexp 11374    ~~> cli 12270   sincsin 12658   picpi 12661   S.citg 19502
This theorem is referenced by:  wallispi  27786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cc 8307  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-ofr 6298  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-omul 6721  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-acn 7821  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ioc 10913  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-fac 11559  df-bc 11586  df-hash 11611  df-shft 11874  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275  df-sum 12472  df-ef 12662  df-sin 12664  df-cos 12665  df-pi 12667  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-lp 17192  df-perf 17193  df-cn 17283  df-cnp 17284  df-haus 17371  df-cmp 17442  df-tx 17586  df-hmeo 17779  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900  df-ovol 19353  df-vol 19354  df-mbf 19504  df-itg1 19505  df-itg2 19506  df-ibl 19507  df-itg 19508  df-0p 19554  df-limc 19745  df-dv 19746
  Copyright terms: Public domain W3C validator