Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfr3g Unicode version

Theorem wfr3g 24257
Description: Functions defined by well-founded recursion are identical up to relation, domain, and characteristic function. (Contributed by Scott Fenton, 11-Feb-2011.)
Assertion
Ref Expression
wfr3g  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  F  =  G )
Distinct variable groups:    y, A    y, F    y, G    y, H    y, R

Proof of Theorem wfr3g
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 2677 . . . . . . 7  |-  ( A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) )  <->  ( A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )
2 fveq2 5527 . . . . . . . . . . . 12  |-  ( z  =  w  ->  ( F `  z )  =  ( F `  w ) )
3 fveq2 5527 . . . . . . . . . . . 12  |-  ( z  =  w  ->  ( G `  z )  =  ( G `  w ) )
42, 3eqeq12d 2299 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( F `  z
)  =  ( G `
 z )  <->  ( F `  w )  =  ( G `  w ) ) )
54imbi2d 307 . . . . . . . . . 10  |-  ( z  =  w  ->  (
( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) )  <->  ( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F `  w )  =  ( G `  w ) ) ) )
6 nfv 1607 . . . . . . . . . . . 12  |-  F/ w
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )
76ra5 3077 . . . . . . . . . . 11  |-  ( A. w  e.  Pred  ( R ,  A ,  z ) ( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F `  w )  =  ( G `  w ) )  -> 
( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) ) )
8 fveq2 5527 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( F `  y )  =  ( F `  z ) )
9 predeq3 24173 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  z  ->  Pred ( R ,  A , 
y )  =  Pred ( R ,  A , 
z ) )
109reseq2d 4957 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  z  ->  ( F  |`  Pred ( R ,  A ,  y )
)  =  ( F  |`  Pred ( R ,  A ,  z )
) )
1110fveq2d 5531 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( H `  ( F  |` 
Pred ( R ,  A ,  y )
) )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) ) )
128, 11eqeq12d 2299 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  <->  ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) ) ) )
13 fveq2 5527 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( G `  y )  =  ( G `  z ) )
149reseq2d 4957 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  z  ->  ( G  |`  Pred ( R ,  A ,  y )
)  =  ( G  |`  Pred ( R ,  A ,  z )
) )
1514fveq2d 5531 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  ( H `  ( G  |` 
Pred ( R ,  A ,  y )
) )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )
1613, 15eqeq12d 2299 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
( G `  y
)  =  ( H `
 ( G  |`  Pred ( R ,  A ,  y ) ) )  <->  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) ) )
1712, 16anbi12d 691 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) )  <->  ( ( F `
 z )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) ) ) ) )
1817rspcva 2884 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  A  /\  A. y  e.  A  ( ( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( F `
 z )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) ) ) )
19 predss 24175 . . . . . . . . . . . . . . . . . . . . . . 23  |-  Pred ( R ,  A , 
z )  C_  A
20 fvreseq 5630 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  Pred ( R ,  A ,  z )  C_  A )  ->  ( ( F  |`  Pred ( R ,  A ,  z ) )  =  ( G  |`  Pred ( R ,  A ,  z ) )  <->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) ) )
2119, 20mpan2 652 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( ( F  |`  Pred ( R ,  A ,  z ) )  =  ( G  |`  Pred ( R ,  A ,  z ) )  <->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) ) )
2221biimpar 471 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( F  |`  Pred ( R ,  A ,  z ) )  =  ( G  |`  Pred ( R ,  A ,  z ) ) )
2322eqcomd 2290 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( G  |`  Pred ( R ,  A ,  z ) )  =  ( F  |`  Pred ( R ,  A ,  z ) ) )
2423fveq2d 5531 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) )  =  ( H `  ( F  |`  Pred ( R ,  A , 
z ) ) ) )
25 eqtr3 2304 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F `  z
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( H `
 ( G  |`  Pred ( R ,  A ,  z ) ) )  =  ( H `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) )  ->  ( F `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) ) )
2625ancoms 439 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( H `  ( G  |`  Pred ( R ,  A ,  z )
) )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A , 
z ) ) ) )  ->  ( F `  z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )
27 eqtr3 2304 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F `  z
)  =  ( H `
 ( G  |`  Pred ( R ,  A ,  z ) ) )  /\  ( G `
 z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )  -> 
( F `  z
)  =  ( G `
 z ) )
2827ex 423 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) )  ->  ( ( G `
 z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) )  ->  ( F `  z )  =  ( G `  z ) ) )
2926, 28syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( H `  ( G  |`  Pred ( R ,  A ,  z )
) )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A , 
z ) ) ) )  ->  ( ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) )  ->  ( F `  z )  =  ( G `  z ) ) )
3029expimpd 586 . . . . . . . . . . . . . . . . . . 19  |-  ( ( H `  ( G  |`  Pred ( R ,  A ,  z )
) )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  ->  (
( ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A , 
z ) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) )
3124, 30syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( ( ( F `  z )  =  ( H `  ( F  |`  Pred ( R ,  A , 
z ) ) )  /\  ( G `  z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )  -> 
( F `  z
)  =  ( G `
 z ) ) )
3231com12 27 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  z
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( G `
 z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )  -> 
( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. w  e.  Pred  ( R ,  A ,  z ) ( F `  w )  =  ( G `  w ) )  ->  ( F `  z )  =  ( G `  z ) ) )
3332exp3a 425 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  z
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( G `
 z )  =  ( H `  ( G  |`  Pred ( R ,  A ,  z )
) ) )  -> 
( ( F  Fn  A  /\  G  Fn  A
)  ->  ( A. w  e.  Pred  ( R ,  A ,  z ) ( F `  w )  =  ( G `  w )  ->  ( F `  z )  =  ( G `  z ) ) ) )
3418, 33syl 15 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  A  /\  A. y  e.  A  ( ( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
)  ->  ( F `  z )  =  ( G `  z ) ) ) )
3534ex 423 . . . . . . . . . . . . . 14  |-  ( z  e.  A  ->  ( A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) )  ->  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A. w  e. 
Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) ) )
3635com23 72 . . . . . . . . . . . . 13  |-  ( z  e.  A  ->  (
( F  Fn  A  /\  G  Fn  A
)  ->  ( A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) )  -> 
( A. w  e. 
Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) ) )
3736imp3a 420 . . . . . . . . . . . 12  |-  ( z  e.  A  ->  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) )
3837a2d 23 . . . . . . . . . . 11  |-  ( z  e.  A  ->  (
( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  (
( F `  y
)  =  ( H `
 ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) )  ->  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) ) )
397, 38syl5 28 . . . . . . . . . 10  |-  ( z  e.  A  ->  ( A. w  e.  Pred  ( R ,  A , 
z ) ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  w )  =  ( G `  w ) )  ->  ( (
( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) ) )
405, 39wfis2g 24215 . . . . . . . . 9  |-  ( ( R  We  A  /\  R Se  A )  ->  A. z  e.  A  ( (
( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) )
41 r19.21v 2632 . . . . . . . . 9  |-  ( A. z  e.  A  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) )  <->  ( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
4240, 41sylib 188 . . . . . . . 8  |-  ( ( R  We  A  /\  R Se  A )  ->  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
4342com12 27 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( R  We  A  /\  R Se  A )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
441, 43sylan2br 462 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  ( A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( R  We  A  /\  R Se  A )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
4544an4s 799 . . . . 5  |-  ( ( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  (
( R  We  A  /\  R Se  A )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
4645com12 27 . . . 4  |-  ( ( R  We  A  /\  R Se  A )  ->  (
( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A ,  y )
) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
47463impib 1149 . . 3  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) )
48 eqid 2285 . . 3  |-  A  =  A
4947, 48jctil 523 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
50 eqfnfv2 5625 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <-> 
( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) ) )
5150ad2ant2r 727 . . 3  |-  ( ( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F  =  G  <->  ( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) ) )
52513adant1 973 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F  =  G  <->  ( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) ) )
5349, 52mpbird 223 1  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( H `  ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( H `  ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1625    e. wcel 1686   A.wral 2545    C_ wss 3154   Se wse 4352    We wwe 4353    |` cres 4693    Fn wfn 5252   ` cfv 5257   Predcpred 24169
This theorem is referenced by:  wfrlem5  24262  wfr3  24277
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-mpt 4081  df-id 4311  df-po 4316  df-so 4317  df-fr 4354  df-se 4355  df-we 4356  df-xp 4697  df-rel 4698  df-cnv 4699  df-co 4700  df-dm 4701  df-rn 4702  df-res 4703  df-ima 4704  df-iota 5221  df-fun 5259  df-fn 5260  df-fv 5265  df-pred 24170
  Copyright terms: Public domain W3C validator