Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfrlem14 Structured version   Unicode version

Theorem wfrlem14 25556
Description: Lemma for well-founded recursion. Compute the value of  C. (Contributed by Scott Fenton, 21-Apr-2011.)
Hypotheses
Ref Expression
wfrlem13.1  |-  R  We  A
wfrlem13.2  |-  R Se  A
wfrlem13.3  |-  F  = wrecs ( R ,  A ,  G )
wfrlem13.4  |-  C  =  ( F  u.  { <. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. } )
Assertion
Ref Expression
wfrlem14  |-  ( z  e.  ( A  \  dom  F )  ->  (
y  e.  ( dom 
F  u.  { z } )  ->  ( C `  y )  =  ( G `  ( C  |`  Pred ( R ,  A , 
y ) ) ) ) )
Distinct variable groups:    y, A, z    y, F, z    y, G    y, R, z    y, C
Allowed substitution hints:    C( z)    G( z)

Proof of Theorem wfrlem14
StepHypRef Expression
1 wfrlem13.1 . . 3  |-  R  We  A
2 wfrlem13.2 . . 3  |-  R Se  A
3 wfrlem13.3 . . 3  |-  F  = wrecs ( R ,  A ,  G )
4 wfrlem13.4 . . 3  |-  C  =  ( F  u.  { <. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. } )
51, 2, 3, 4wfrlem13 25555 . 2  |-  ( z  e.  ( A  \  dom  F )  ->  C  Fn  ( dom  F  u.  { z } ) )
6 elun 3490 . . . 4  |-  ( y  e.  ( dom  F  u.  { z } )  <-> 
( y  e.  dom  F  \/  y  e.  {
z } ) )
7 elsn 3831 . . . . 5  |-  ( y  e.  { z }  <-> 
y  =  z )
87orbi2i 507 . . . 4  |-  ( ( y  e.  dom  F  \/  y  e.  { z } )  <->  ( y  e.  dom  F  \/  y  =  z ) )
96, 8bitri 242 . . 3  |-  ( y  e.  ( dom  F  u.  { z } )  <-> 
( y  e.  dom  F  \/  y  =  z ) )
101, 2, 3wfrlem12 25554 . . . . . . 7  |-  ( y  e.  dom  F  -> 
( F `  y
)  =  ( G `
 ( F  |`  Pred ( R ,  A ,  y ) ) ) )
11 fnfun 5545 . . . . . . . 8  |-  ( C  Fn  ( dom  F  u.  { z } )  ->  Fun  C )
12 ssun1 3512 . . . . . . . . . 10  |-  F  C_  ( F  u.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. } )
1312, 4sseqtr4i 3383 . . . . . . . . 9  |-  F  C_  C
14 funssfv 5749 . . . . . . . . . 10  |-  ( ( Fun  C  /\  F  C_  C  /\  y  e. 
dom  F )  -> 
( C `  y
)  =  ( F `
 y ) )
153wfrlem9 25551 . . . . . . . . . . . 12  |-  ( y  e.  dom  F  ->  Pred ( R ,  A ,  y )  C_  dom  F )
16 fun2ssres 5497 . . . . . . . . . . . 12  |-  ( ( Fun  C  /\  F  C_  C  /\  Pred ( R ,  A , 
y )  C_  dom  F )  ->  ( C  |` 
Pred ( R ,  A ,  y )
)  =  ( F  |`  Pred ( R ,  A ,  y )
) )
1715, 16syl3an3 1220 . . . . . . . . . . 11  |-  ( ( Fun  C  /\  F  C_  C  /\  y  e. 
dom  F )  -> 
( C  |`  Pred ( R ,  A , 
y ) )  =  ( F  |`  Pred ( R ,  A , 
y ) ) )
1817fveq2d 5735 . . . . . . . . . 10  |-  ( ( Fun  C  /\  F  C_  C  /\  y  e. 
dom  F )  -> 
( G `  ( C  |`  Pred ( R ,  A ,  y )
) )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) )
1914, 18eqeq12d 2452 . . . . . . . . 9  |-  ( ( Fun  C  /\  F  C_  C  /\  y  e. 
dom  F )  -> 
( ( C `  y )  =  ( G `  ( C  |`  Pred ( R ,  A ,  y )
) )  <->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) ) )
2013, 19mp3an2 1268 . . . . . . . 8  |-  ( ( Fun  C  /\  y  e.  dom  F )  -> 
( ( C `  y )  =  ( G `  ( C  |`  Pred ( R ,  A ,  y )
) )  <->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) ) )
2111, 20sylan 459 . . . . . . 7  |-  ( ( C  Fn  ( dom 
F  u.  { z } )  /\  y  e.  dom  F )  -> 
( ( C `  y )  =  ( G `  ( C  |`  Pred ( R ,  A ,  y )
) )  <->  ( F `  y )  =  ( G `  ( F  |`  Pred ( R ,  A ,  y )
) ) ) )
2210, 21syl5ibr 214 . . . . . 6  |-  ( ( C  Fn  ( dom 
F  u.  { z } )  /\  y  e.  dom  F )  -> 
( y  e.  dom  F  ->  ( C `  y )  =  ( G `  ( C  |`  Pred ( R ,  A ,  y )
) ) ) )
2322ex 425 . . . . 5  |-  ( C  Fn  ( dom  F  u.  { z } )  ->  ( y  e. 
dom  F  ->  ( y  e.  dom  F  -> 
( C `  y
)  =  ( G `
 ( C  |`  Pred ( R ,  A ,  y ) ) ) ) ) )
2423pm2.43d 47 . . . 4  |-  ( C  Fn  ( dom  F  u.  { z } )  ->  ( y  e. 
dom  F  ->  ( C `
 y )  =  ( G `  ( C  |`  Pred ( R ,  A ,  y )
) ) ) )
25 vex 2961 . . . . . . . 8  |-  z  e. 
_V
2625snid 3843 . . . . . . 7  |-  z  e. 
{ z }
27 elun2 3517 . . . . . . 7  |-  ( z  e.  { z }  ->  z  e.  ( dom  F  u.  {
z } ) )
2826, 27ax-mp 5 . . . . . 6  |-  z  e.  ( dom  F  u.  { z } )
294reseq1i 5145 . . . . . . . . . . . . 13  |-  ( C  |`  Pred ( R ,  A ,  z )
)  =  ( ( F  u.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. } )  |`  Pred ( R ,  A , 
z ) )
30 resundir 5164 . . . . . . . . . . . . 13  |-  ( ( F  u.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. } )  |`  Pred ( R ,  A , 
z ) )  =  ( ( F  |`  Pred ( R ,  A ,  z ) )  u.  ( { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. }  |`  Pred ( R ,  A ,  z ) ) )
31 wefr 4575 . . . . . . . . . . . . . . . . 17  |-  ( R  We  A  ->  R  Fr  A )
321, 31ax-mp 5 . . . . . . . . . . . . . . . 16  |-  R  Fr  A
33 predfrirr 25478 . . . . . . . . . . . . . . . 16  |-  ( R  Fr  A  ->  -.  z  e.  Pred ( R ,  A ,  z ) )
34 ressnop0 5916 . . . . . . . . . . . . . . . 16  |-  ( -.  z  e.  Pred ( R ,  A , 
z )  ->  ( { <. z ,  ( G `  ( F  |`  Pred ( R ,  A ,  z )
) ) >. }  |`  Pred ( R ,  A , 
z ) )  =  (/) )
3532, 33, 34mp2b 10 . . . . . . . . . . . . . . 15  |-  ( {
<. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. }  |`  Pred ( R ,  A , 
z ) )  =  (/)
3635uneq2i 3500 . . . . . . . . . . . . . 14  |-  ( ( F  |`  Pred ( R ,  A ,  z ) )  u.  ( { <. z ,  ( G `  ( F  |`  Pred ( R ,  A ,  z )
) ) >. }  |`  Pred ( R ,  A , 
z ) ) )  =  ( ( F  |`  Pred ( R ,  A ,  z )
)  u.  (/) )
37 un0 3654 . . . . . . . . . . . . . 14  |-  ( ( F  |`  Pred ( R ,  A ,  z ) )  u.  (/) )  =  ( F  |`  Pred ( R ,  A , 
z ) )
3836, 37eqtri 2458 . . . . . . . . . . . . 13  |-  ( ( F  |`  Pred ( R ,  A ,  z ) )  u.  ( { <. z ,  ( G `  ( F  |`  Pred ( R ,  A ,  z )
) ) >. }  |`  Pred ( R ,  A , 
z ) ) )  =  ( F  |`  Pred ( R ,  A ,  z ) )
3929, 30, 383eqtri 2462 . . . . . . . . . . . 12  |-  ( C  |`  Pred ( R ,  A ,  z )
)  =  ( F  |`  Pred ( R ,  A ,  z )
)
4039fveq2i 5734 . . . . . . . . . . 11  |-  ( G `
 ( C  |`  Pred ( R ,  A ,  z ) ) )  =  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) )
4140opeq2i 3990 . . . . . . . . . 10  |-  <. z ,  ( G `  ( C  |`  Pred ( R ,  A , 
z ) ) )
>.  =  <. z ,  ( G `  ( F  |`  Pred ( R ,  A ,  z )
) ) >.
42 opex 4430 . . . . . . . . . . 11  |-  <. z ,  ( G `  ( C  |`  Pred ( R ,  A , 
z ) ) )
>.  e.  _V
4342elsnc 3839 . . . . . . . . . 10  |-  ( <.
z ,  ( G `
 ( C  |`  Pred ( R ,  A ,  z ) ) ) >.  e.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. }  <->  <. z ,  ( G `  ( C  |`  Pred ( R ,  A ,  z )
) ) >.  =  <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. )
4441, 43mpbir 202 . . . . . . . . 9  |-  <. z ,  ( G `  ( C  |`  Pred ( R ,  A , 
z ) ) )
>.  e.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. }
45 elun2 3517 . . . . . . . . 9  |-  ( <.
z ,  ( G `
 ( C  |`  Pred ( R ,  A ,  z ) ) ) >.  e.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. }  ->  <. z ,  ( G `  ( C  |`  Pred ( R ,  A ,  z )
) ) >.  e.  ( F  u.  { <. z ,  ( G `  ( F  |`  Pred ( R ,  A , 
z ) ) )
>. } ) )
4644, 45ax-mp 5 . . . . . . . 8  |-  <. z ,  ( G `  ( C  |`  Pred ( R ,  A , 
z ) ) )
>.  e.  ( F  u.  {
<. z ,  ( G `
 ( F  |`  Pred ( R ,  A ,  z ) ) ) >. } )
4746, 4eleqtrri 2511 . . . . . . 7  |-  <. z ,  ( G `  ( C  |`  Pred ( R ,  A , 
z ) ) )
>.  e.  C
48 fnopfvb 5771 . . . . . . 7  |-  ( ( C  Fn  ( dom 
F  u.  { z } )  /\  z  e.  ( dom  F  u.  { z } ) )  ->  ( ( C `
 z )  =  ( G `  ( C  |`  Pred ( R ,  A ,  z )
) )  <->  <. z ,  ( G `  ( C  |`  Pred ( R ,  A ,  z )
) ) >.  e.  C
) )
4947, 48mpbiri 226 . . . . . 6  |-  ( ( C  Fn  ( dom 
F  u.  { z } )  /\  z  e.  ( dom  F  u.  { z } ) )  ->  ( C `  z )  =  ( G `  ( C  |`  Pred ( R ,  A ,  z )
) ) )
5028, 49mpan2 654 . . . . 5  |-  ( C  Fn  ( dom  F  u.  { z } )  ->  ( C `  z )  =  ( G `  ( C  |`  Pred ( R ,  A ,  z )
) ) )
51 fveq2 5731 . . . . . 6  |-  ( y  =  z  ->  ( C `  y )  =  ( C `  z ) )
52 predeq3 25448 . . . . . . . 8  |-  ( y  =  z  ->  Pred ( R ,  A , 
y )  =  Pred ( R ,  A , 
z ) )
5352reseq2d 5149 . . . . . . 7  |-  ( y  =  z  ->  ( C  |`  Pred ( R ,  A ,  y )
)  =  ( C  |`  Pred ( R ,  A ,  z )
) )
5453fveq2d 5735 . . . . . 6  |-  ( y  =  z  ->  ( G `  ( C  |` 
Pred ( R ,  A ,  y )
) )  =  ( G `  ( C  |`  Pred ( R ,  A ,  z )
) ) )
5551, 54eqeq12d 2452 . . . . 5  |-  ( y  =  z  ->  (
( C `  y
)  =  ( G `
 ( C  |`  Pred ( R ,  A ,  y ) ) )  <->  ( C `  z )  =  ( G `  ( C  |`  Pred ( R ,  A ,  z )
) ) ) )
5650, 55syl5ibrcom 215 . . . 4  |-  ( C  Fn  ( dom  F  u.  { z } )  ->  ( y  =  z  ->  ( C `  y )  =  ( G `  ( C  |`  Pred ( R ,  A ,  y )
) ) ) )
5724, 56jaod 371 . . 3  |-  ( C  Fn  ( dom  F  u.  { z } )  ->  ( ( y  e.  dom  F  \/  y  =  z )  ->  ( C `  y
)  =  ( G `
 ( C  |`  Pred ( R ,  A ,  y ) ) ) ) )
589, 57syl5bi 210 . 2  |-  ( C  Fn  ( dom  F  u.  { z } )  ->  ( y  e.  ( dom  F  u.  { z } )  -> 
( C `  y
)  =  ( G `
 ( C  |`  Pred ( R ,  A ,  y ) ) ) ) )
595, 58syl 16 1  |-  ( z  e.  ( A  \  dom  F )  ->  (
y  e.  ( dom 
F  u.  { z } )  ->  ( C `  y )  =  ( G `  ( C  |`  Pred ( R ,  A , 
y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    \ cdif 3319    u. cun 3320    C_ wss 3322   (/)c0 3630   {csn 3816   <.cop 3819    Fr wfr 4541   Se wse 4542    We wwe 4543   dom cdm 4881    |` cres 4883   Fun wfun 5451    Fn wfn 5452   ` cfv 5457   Predcpred 25443  wrecscwrecs 25535
This theorem is referenced by:  wfrlem15  25557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-fv 5465  df-pred 25444  df-wrecs 25536
  Copyright terms: Public domain W3C validator