MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunfi Unicode version

Theorem wunfi 8529
Description: A weak universe contains all finite sets with elements drawn from the universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
wun0.1  |-  ( ph  ->  U  e. WUni )
wunfi.2  |-  ( ph  ->  A  C_  U )
wunfi.3  |-  ( ph  ->  A  e.  Fin )
Assertion
Ref Expression
wunfi  |-  ( ph  ->  A  e.  U )

Proof of Theorem wunfi
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunfi.2 . 2  |-  ( ph  ->  A  C_  U )
2 wunfi.3 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3312 . . . . . 6  |-  ( x  =  (/)  ->  ( x 
C_  U  <->  (/)  C_  U
) )
4 eleq1 2447 . . . . . 6  |-  ( x  =  (/)  ->  ( x  e.  U  <->  (/)  e.  U
) )
53, 4imbi12d 312 . . . . 5  |-  ( x  =  (/)  ->  ( ( x  C_  U  ->  x  e.  U )  <->  ( (/)  C_  U  -> 
(/)  e.  U )
) )
65imbi2d 308 . . . 4  |-  ( x  =  (/)  ->  ( (
ph  ->  ( x  C_  U  ->  x  e.  U
) )  <->  ( ph  ->  ( (/)  C_  U  ->  (/) 
e.  U ) ) ) )
7 sseq1 3312 . . . . . 6  |-  ( x  =  y  ->  (
x  C_  U  <->  y  C_  U ) )
8 eleq1 2447 . . . . . 6  |-  ( x  =  y  ->  (
x  e.  U  <->  y  e.  U ) )
97, 8imbi12d 312 . . . . 5  |-  ( x  =  y  ->  (
( x  C_  U  ->  x  e.  U )  <-> 
( y  C_  U  ->  y  e.  U ) ) )
109imbi2d 308 . . . 4  |-  ( x  =  y  ->  (
( ph  ->  ( x 
C_  U  ->  x  e.  U ) )  <->  ( ph  ->  ( y  C_  U  ->  y  e.  U ) ) ) )
11 sseq1 3312 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  C_  U 
<->  ( y  u.  {
z } )  C_  U ) )
12 eleq1 2447 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  e.  U  <->  ( y  u. 
{ z } )  e.  U ) )
1311, 12imbi12d 312 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( x 
C_  U  ->  x  e.  U )  <->  ( (
y  u.  { z } )  C_  U  ->  ( y  u.  {
z } )  e.  U ) ) )
1413imbi2d 308 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( ph  ->  ( x  C_  U  ->  x  e.  U ) )  <->  ( ph  ->  ( ( y  u.  {
z } )  C_  U  ->  ( y  u. 
{ z } )  e.  U ) ) ) )
15 sseq1 3312 . . . . . 6  |-  ( x  =  A  ->  (
x  C_  U  <->  A  C_  U
) )
16 eleq1 2447 . . . . . 6  |-  ( x  =  A  ->  (
x  e.  U  <->  A  e.  U ) )
1715, 16imbi12d 312 . . . . 5  |-  ( x  =  A  ->  (
( x  C_  U  ->  x  e.  U )  <-> 
( A  C_  U  ->  A  e.  U ) ) )
1817imbi2d 308 . . . 4  |-  ( x  =  A  ->  (
( ph  ->  ( x 
C_  U  ->  x  e.  U ) )  <->  ( ph  ->  ( A  C_  U  ->  A  e.  U ) ) ) )
19 wun0.1 . . . . . 6  |-  ( ph  ->  U  e. WUni )
2019wun0 8526 . . . . 5  |-  ( ph  -> 
(/)  e.  U )
2120a1d 23 . . . 4  |-  ( ph  ->  ( (/)  C_  U  ->  (/) 
e.  U ) )
22 ssun1 3453 . . . . . . . . 9  |-  y  C_  ( y  u.  {
z } )
23 sstr 3299 . . . . . . . . 9  |-  ( ( y  C_  ( y  u.  { z } )  /\  ( y  u. 
{ z } ) 
C_  U )  -> 
y  C_  U )
2422, 23mpan 652 . . . . . . . 8  |-  ( ( y  u.  { z } )  C_  U  ->  y  C_  U )
2524imim1i 56 . . . . . . 7  |-  ( ( y  C_  U  ->  y  e.  U )  -> 
( ( y  u. 
{ z } ) 
C_  U  ->  y  e.  U ) )
2619adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
y  u.  { z } )  C_  U  /\  y  e.  U
) )  ->  U  e. WUni )
27 simprr 734 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
y  u.  { z } )  C_  U  /\  y  e.  U
) )  ->  y  e.  U )
28 simprl 733 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
y  u.  { z } )  C_  U  /\  y  e.  U
) )  ->  (
y  u.  { z } )  C_  U
)
2928unssbd 3468 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( (
y  u.  { z } )  C_  U  /\  y  e.  U
) )  ->  { z }  C_  U )
30 vex 2902 . . . . . . . . . . . . 13  |-  z  e. 
_V
3130snss 3869 . . . . . . . . . . . 12  |-  ( z  e.  U  <->  { z }  C_  U )
3229, 31sylibr 204 . . . . . . . . . . 11  |-  ( (
ph  /\  ( (
y  u.  { z } )  C_  U  /\  y  e.  U
) )  ->  z  e.  U )
3326, 32wunsn 8524 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
y  u.  { z } )  C_  U  /\  y  e.  U
) )  ->  { z }  e.  U )
3426, 27, 33wunun 8518 . . . . . . . . 9  |-  ( (
ph  /\  ( (
y  u.  { z } )  C_  U  /\  y  e.  U
) )  ->  (
y  u.  { z } )  e.  U
)
3534exp32 589 . . . . . . . 8  |-  ( ph  ->  ( ( y  u. 
{ z } ) 
C_  U  ->  (
y  e.  U  -> 
( y  u.  {
z } )  e.  U ) ) )
3635a2d 24 . . . . . . 7  |-  ( ph  ->  ( ( ( y  u.  { z } )  C_  U  ->  y  e.  U )  -> 
( ( y  u. 
{ z } ) 
C_  U  ->  (
y  u.  { z } )  e.  U
) ) )
3725, 36syl5 30 . . . . . 6  |-  ( ph  ->  ( ( y  C_  U  ->  y  e.  U
)  ->  ( (
y  u.  { z } )  C_  U  ->  ( y  u.  {
z } )  e.  U ) ) )
3837a2i 13 . . . . 5  |-  ( (
ph  ->  ( y  C_  U  ->  y  e.  U
) )  ->  ( ph  ->  ( ( y  u.  { z } )  C_  U  ->  ( y  u.  { z } )  e.  U
) ) )
3938a1i 11 . . . 4  |-  ( y  e.  Fin  ->  (
( ph  ->  ( y 
C_  U  ->  y  e.  U ) )  -> 
( ph  ->  ( ( y  u.  { z } )  C_  U  ->  ( y  u.  {
z } )  e.  U ) ) ) )
406, 10, 14, 18, 21, 39findcard2 7284 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  U  ->  A  e.  U
) ) )
412, 40mpcom 34 . 2  |-  ( ph  ->  ( A  C_  U  ->  A  e.  U ) )
421, 41mpd 15 1  |-  ( ph  ->  A  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    u. cun 3261    C_ wss 3263   (/)c0 3571   {csn 3757   Fincfn 7045  WUnicwun 8508
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-sbc 3105  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-1o 6660  df-er 6841  df-en 7046  df-fin 7049  df-wun 8510
  Copyright terms: Public domain W3C validator