MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoco2cn Unicode version

Theorem xkoco2cn 17612
Description: If  F is a continuous function, then  g  |->  F  o.  g is a continuous function on function spaces. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypotheses
Ref Expression
xkoco2cn.r  |-  ( ph  ->  R  e.  Top )
xkoco2cn.f  |-  ( ph  ->  F  e.  ( S  Cn  T ) )
Assertion
Ref Expression
xkoco2cn  |-  ( ph  ->  ( g  e.  ( R  Cn  S ) 
|->  ( F  o.  g
) )  e.  ( ( S  ^ k o  R )  Cn  ( T  ^ k o  R
) ) )
Distinct variable groups:    ph, g    R, g    S, g    T, g   
g, F

Proof of Theorem xkoco2cn
Dummy variables  k 
v  x  h  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . 4  |-  ( (
ph  /\  g  e.  ( R  Cn  S
) )  ->  g  e.  ( R  Cn  S
) )
2 xkoco2cn.f . . . . 5  |-  ( ph  ->  F  e.  ( S  Cn  T ) )
32adantr 452 . . . 4  |-  ( (
ph  /\  g  e.  ( R  Cn  S
) )  ->  F  e.  ( S  Cn  T
) )
4 cnco 17253 . . . 4  |-  ( ( g  e.  ( R  Cn  S )  /\  F  e.  ( S  Cn  T ) )  -> 
( F  o.  g
)  e.  ( R  Cn  T ) )
51, 3, 4syl2anc 643 . . 3  |-  ( (
ph  /\  g  e.  ( R  Cn  S
) )  ->  ( F  o.  g )  e.  ( R  Cn  T
) )
6 eqid 2388 . . 3  |-  ( g  e.  ( R  Cn  S )  |->  ( F  o.  g ) )  =  ( g  e.  ( R  Cn  S
)  |->  ( F  o.  g ) )
75, 6fmptd 5833 . 2  |-  ( ph  ->  ( g  e.  ( R  Cn  S ) 
|->  ( F  o.  g
) ) : ( R  Cn  S ) --> ( R  Cn  T
) )
8 eqid 2388 . . . . . 6  |-  U. R  =  U. R
9 eqid 2388 . . . . . 6  |-  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp }  =  {
y  e.  ~P U. R  |  ( Rt  y
)  e.  Comp }
10 eqid 2388 . . . . . 6  |-  ( k  e.  { y  e. 
~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } )  =  ( k  e.  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } )
118, 9, 10xkobval 17540 . . . . 5  |-  ran  (
k  e.  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } )  =  {
x  |  E. k  e.  ~P  U. R E. v  e.  T  (
( Rt  k )  e. 
Comp  /\  x  =  {
h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) }
1211abeq2i 2495 . . . 4  |-  ( x  e.  ran  ( k  e.  { y  e. 
~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } )  <->  E. k  e.  ~P  U. R E. v  e.  T  (
( Rt  k )  e. 
Comp  /\  x  =  {
h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) )
13 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( k  e.  ~P U. R  /\  v  e.  T ) )  /\  ( Rt  k )  e. 
Comp )  /\  g  e.  ( R  Cn  S
) )  ->  g  e.  ( R  Cn  S
) )
142ad3antrrr 711 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( k  e.  ~P U. R  /\  v  e.  T ) )  /\  ( Rt  k )  e. 
Comp )  /\  g  e.  ( R  Cn  S
) )  ->  F  e.  ( S  Cn  T
) )
1513, 14, 4syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( k  e.  ~P U. R  /\  v  e.  T ) )  /\  ( Rt  k )  e. 
Comp )  /\  g  e.  ( R  Cn  S
) )  ->  ( F  o.  g )  e.  ( R  Cn  T
) )
16 imaeq1 5139 . . . . . . . . . . . . . 14  |-  ( h  =  ( F  o.  g )  ->  (
h " k )  =  ( ( F  o.  g ) "
k ) )
17 imaco 5316 . . . . . . . . . . . . . 14  |-  ( ( F  o.  g )
" k )  =  ( F " (
g " k ) )
1816, 17syl6eq 2436 . . . . . . . . . . . . 13  |-  ( h  =  ( F  o.  g )  ->  (
h " k )  =  ( F "
( g " k
) ) )
1918sseq1d 3319 . . . . . . . . . . . 12  |-  ( h  =  ( F  o.  g )  ->  (
( h " k
)  C_  v  <->  ( F " ( g " k
) )  C_  v
) )
2019elrab3 3037 . . . . . . . . . . 11  |-  ( ( F  o.  g )  e.  ( R  Cn  T )  ->  (
( F  o.  g
)  e.  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v }  <->  ( F "
( g " k
) )  C_  v
) )
2115, 20syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( k  e.  ~P U. R  /\  v  e.  T ) )  /\  ( Rt  k )  e. 
Comp )  /\  g  e.  ( R  Cn  S
) )  ->  (
( F  o.  g
)  e.  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v }  <->  ( F "
( g " k
) )  C_  v
) )
22 eqid 2388 . . . . . . . . . . . . . . 15  |-  U. S  =  U. S
23 eqid 2388 . . . . . . . . . . . . . . 15  |-  U. T  =  U. T
2422, 23cnf 17233 . . . . . . . . . . . . . 14  |-  ( F  e.  ( S  Cn  T )  ->  F : U. S --> U. T
)
252, 24syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  F : U. S --> U. T )
2625ad3antrrr 711 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( k  e.  ~P U. R  /\  v  e.  T ) )  /\  ( Rt  k )  e. 
Comp )  /\  g  e.  ( R  Cn  S
) )  ->  F : U. S --> U. T
)
27 ffun 5534 . . . . . . . . . . . 12  |-  ( F : U. S --> U. T  ->  Fun  F )
2826, 27syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( k  e.  ~P U. R  /\  v  e.  T ) )  /\  ( Rt  k )  e. 
Comp )  /\  g  e.  ( R  Cn  S
) )  ->  Fun  F )
29 imassrn 5157 . . . . . . . . . . . . 13  |-  ( g
" k )  C_  ran  g
308, 22cnf 17233 . . . . . . . . . . . . . . 15  |-  ( g  e.  ( R  Cn  S )  ->  g : U. R --> U. S
)
3113, 30syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( k  e.  ~P U. R  /\  v  e.  T ) )  /\  ( Rt  k )  e. 
Comp )  /\  g  e.  ( R  Cn  S
) )  ->  g : U. R --> U. S
)
32 frn 5538 . . . . . . . . . . . . . 14  |-  ( g : U. R --> U. S  ->  ran  g  C_  U. S
)
3331, 32syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( k  e.  ~P U. R  /\  v  e.  T ) )  /\  ( Rt  k )  e. 
Comp )  /\  g  e.  ( R  Cn  S
) )  ->  ran  g  C_  U. S )
3429, 33syl5ss 3303 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( k  e.  ~P U. R  /\  v  e.  T ) )  /\  ( Rt  k )  e. 
Comp )  /\  g  e.  ( R  Cn  S
) )  ->  (
g " k ) 
C_  U. S )
35 fdm 5536 . . . . . . . . . . . . 13  |-  ( F : U. S --> U. T  ->  dom  F  =  U. S )
3626, 35syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( k  e.  ~P U. R  /\  v  e.  T ) )  /\  ( Rt  k )  e. 
Comp )  /\  g  e.  ( R  Cn  S
) )  ->  dom  F  =  U. S )
3734, 36sseqtr4d 3329 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( k  e.  ~P U. R  /\  v  e.  T ) )  /\  ( Rt  k )  e. 
Comp )  /\  g  e.  ( R  Cn  S
) )  ->  (
g " k ) 
C_  dom  F )
38 funimass3 5786 . . . . . . . . . . 11  |-  ( ( Fun  F  /\  (
g " k ) 
C_  dom  F )  ->  ( ( F "
( g " k
) )  C_  v  <->  ( g " k ) 
C_  ( `' F " v ) ) )
3928, 37, 38syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( k  e.  ~P U. R  /\  v  e.  T ) )  /\  ( Rt  k )  e. 
Comp )  /\  g  e.  ( R  Cn  S
) )  ->  (
( F " (
g " k ) )  C_  v  <->  ( g " k )  C_  ( `' F " v ) ) )
4021, 39bitrd 245 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( k  e.  ~P U. R  /\  v  e.  T ) )  /\  ( Rt  k )  e. 
Comp )  /\  g  e.  ( R  Cn  S
) )  ->  (
( F  o.  g
)  e.  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v }  <->  ( g "
k )  C_  ( `' F " v ) ) )
4140rabbidva 2891 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ~P U. R  /\  v  e.  T
) )  /\  ( Rt  k )  e.  Comp )  ->  { g  e.  ( R  Cn  S
)  |  ( F  o.  g )  e. 
{ h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } }  =  {
g  e.  ( R  Cn  S )  |  ( g " k
)  C_  ( `' F " v ) } )
42 xkoco2cn.r . . . . . . . . . 10  |-  ( ph  ->  R  e.  Top )
4342ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ~P U. R  /\  v  e.  T
) )  /\  ( Rt  k )  e.  Comp )  ->  R  e.  Top )
44 cntop1 17227 . . . . . . . . . . 11  |-  ( F  e.  ( S  Cn  T )  ->  S  e.  Top )
452, 44syl 16 . . . . . . . . . 10  |-  ( ph  ->  S  e.  Top )
4645ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ~P U. R  /\  v  e.  T
) )  /\  ( Rt  k )  e.  Comp )  ->  S  e.  Top )
47 simplrl 737 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  ~P U. R  /\  v  e.  T
) )  /\  ( Rt  k )  e.  Comp )  ->  k  e.  ~P U. R )
4847elpwid 3752 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ~P U. R  /\  v  e.  T
) )  /\  ( Rt  k )  e.  Comp )  ->  k  C_  U. R
)
49 simpr 448 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ~P U. R  /\  v  e.  T
) )  /\  ( Rt  k )  e.  Comp )  ->  ( Rt  k )  e.  Comp )
502ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  ~P U. R  /\  v  e.  T
) )  /\  ( Rt  k )  e.  Comp )  ->  F  e.  ( S  Cn  T ) )
51 simplrr 738 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
k  e.  ~P U. R  /\  v  e.  T
) )  /\  ( Rt  k )  e.  Comp )  ->  v  e.  T
)
52 cnima 17252 . . . . . . . . . 10  |-  ( ( F  e.  ( S  Cn  T )  /\  v  e.  T )  ->  ( `' F "
v )  e.  S
)
5350, 51, 52syl2anc 643 . . . . . . . . 9  |-  ( ( ( ph  /\  (
k  e.  ~P U. R  /\  v  e.  T
) )  /\  ( Rt  k )  e.  Comp )  ->  ( `' F " v )  e.  S
)
548, 43, 46, 48, 49, 53xkoopn 17543 . . . . . . . 8  |-  ( ( ( ph  /\  (
k  e.  ~P U. R  /\  v  e.  T
) )  /\  ( Rt  k )  e.  Comp )  ->  { g  e.  ( R  Cn  S
)  |  ( g
" k )  C_  ( `' F " v ) }  e.  ( S  ^ k o  R
) )
5541, 54eqeltrd 2462 . . . . . . 7  |-  ( ( ( ph  /\  (
k  e.  ~P U. R  /\  v  e.  T
) )  /\  ( Rt  k )  e.  Comp )  ->  { g  e.  ( R  Cn  S
)  |  ( F  o.  g )  e. 
{ h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } }  e.  ( S  ^ k o  R
) )
56 imaeq2 5140 . . . . . . . . 9  |-  ( x  =  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v }  ->  ( `' ( g  e.  ( R  Cn  S ) 
|->  ( F  o.  g
) ) " x
)  =  ( `' ( g  e.  ( R  Cn  S ) 
|->  ( F  o.  g
) ) " {
h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) )
576mptpreima 5304 . . . . . . . . 9  |-  ( `' ( g  e.  ( R  Cn  S ) 
|->  ( F  o.  g
) ) " {
h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
)  =  { g  e.  ( R  Cn  S )  |  ( F  o.  g )  e.  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } }
5856, 57syl6eq 2436 . . . . . . . 8  |-  ( x  =  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v }  ->  ( `' ( g  e.  ( R  Cn  S ) 
|->  ( F  o.  g
) ) " x
)  =  { g  e.  ( R  Cn  S )  |  ( F  o.  g )  e.  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } } )
5958eleq1d 2454 . . . . . . 7  |-  ( x  =  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v }  ->  ( ( `' ( g  e.  ( R  Cn  S
)  |->  ( F  o.  g ) ) "
x )  e.  ( S  ^ k o  R )  <->  { g  e.  ( R  Cn  S
)  |  ( F  o.  g )  e. 
{ h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } }  e.  ( S  ^ k o  R
) ) )
6055, 59syl5ibrcom 214 . . . . . 6  |-  ( ( ( ph  /\  (
k  e.  ~P U. R  /\  v  e.  T
) )  /\  ( Rt  k )  e.  Comp )  ->  ( x  =  { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v }  ->  ( `' ( g  e.  ( R  Cn  S )  |->  ( F  o.  g ) ) " x )  e.  ( S  ^ k o  R )
) )
6160expimpd 587 . . . . 5  |-  ( (
ph  /\  ( k  e.  ~P U. R  /\  v  e.  T )
)  ->  ( (
( Rt  k )  e. 
Comp  /\  x  =  {
h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
)  ->  ( `' ( g  e.  ( R  Cn  S ) 
|->  ( F  o.  g
) ) " x
)  e.  ( S  ^ k o  R
) ) )
6261rexlimdvva 2781 . . . 4  |-  ( ph  ->  ( E. k  e. 
~P  U. R E. v  e.  T  ( ( Rt  k )  e.  Comp  /\  x  =  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } )  ->  ( `' ( g  e.  ( R  Cn  S
)  |->  ( F  o.  g ) ) "
x )  e.  ( S  ^ k o  R ) ) )
6312, 62syl5bi 209 . . 3  |-  ( ph  ->  ( x  e.  ran  ( k  e.  {
y  e.  ~P U. R  |  ( Rt  y
)  e.  Comp } , 
v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
)  ->  ( `' ( g  e.  ( R  Cn  S ) 
|->  ( F  o.  g
) ) " x
)  e.  ( S  ^ k o  R
) ) )
6463ralrimiv 2732 . 2  |-  ( ph  ->  A. x  e.  ran  ( k  e.  {
y  e.  ~P U. R  |  ( Rt  y
)  e.  Comp } , 
v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ( `' ( g  e.  ( R  Cn  S )  |->  ( F  o.  g ) ) " x )  e.  ( S  ^ k o  R )
)
65 eqid 2388 . . . . 5  |-  ( S  ^ k o  R
)  =  ( S  ^ k o  R
)
6665xkotopon 17554 . . . 4  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( S  ^ k o  R )  e.  (TopOn `  ( R  Cn  S
) ) )
6742, 45, 66syl2anc 643 . . 3  |-  ( ph  ->  ( S  ^ k o  R )  e.  (TopOn `  ( R  Cn  S
) ) )
68 ovex 6046 . . . . . 6  |-  ( R  Cn  T )  e. 
_V
6968pwex 4324 . . . . 5  |-  ~P ( R  Cn  T )  e. 
_V
708, 9, 10xkotf 17539 . . . . . 6  |-  ( k  e.  { y  e. 
~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } ) : ( { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp }  X.  T ) --> ~P ( R  Cn  T )
71 frn 5538 . . . . . 6  |-  ( ( k  e.  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } ) : ( { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp }  X.  T ) --> ~P ( R  Cn  T )  ->  ran  ( k  e.  {
y  e.  ~P U. R  |  ( Rt  y
)  e.  Comp } , 
v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
)  C_  ~P ( R  Cn  T ) )
7270, 71ax-mp 8 . . . . 5  |-  ran  (
k  e.  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } )  C_  ~P ( R  Cn  T
)
7369, 72ssexi 4290 . . . 4  |-  ran  (
k  e.  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } )  e.  _V
7473a1i 11 . . 3  |-  ( ph  ->  ran  ( k  e. 
{ y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } , 
v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
)  e.  _V )
75 cntop2 17228 . . . . 5  |-  ( F  e.  ( S  Cn  T )  ->  T  e.  Top )
762, 75syl 16 . . . 4  |-  ( ph  ->  T  e.  Top )
778, 9, 10xkoval 17541 . . . 4  |-  ( ( R  e.  Top  /\  T  e.  Top )  ->  ( T  ^ k o  R )  =  (
topGen `  ( fi `  ran  ( k  e.  {
y  e.  ~P U. R  |  ( Rt  y
)  e.  Comp } , 
v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ) ) )
7842, 76, 77syl2anc 643 . . 3  |-  ( ph  ->  ( T  ^ k o  R )  =  (
topGen `  ( fi `  ran  ( k  e.  {
y  e.  ~P U. R  |  ( Rt  y
)  e.  Comp } , 
v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ) ) )
79 eqid 2388 . . . . 5  |-  ( T  ^ k o  R
)  =  ( T  ^ k o  R
)
8079xkotopon 17554 . . . 4  |-  ( ( R  e.  Top  /\  T  e.  Top )  ->  ( T  ^ k o  R )  e.  (TopOn `  ( R  Cn  T
) ) )
8142, 76, 80syl2anc 643 . . 3  |-  ( ph  ->  ( T  ^ k o  R )  e.  (TopOn `  ( R  Cn  T
) ) )
8267, 74, 78, 81subbascn 17241 . 2  |-  ( ph  ->  ( ( g  e.  ( R  Cn  S
)  |->  ( F  o.  g ) )  e.  ( ( S  ^ k o  R )  Cn  ( T  ^ k o  R ) )  <->  ( (
g  e.  ( R  Cn  S )  |->  ( F  o.  g ) ) : ( R  Cn  S ) --> ( R  Cn  T )  /\  A. x  e. 
ran  ( k  e. 
{ y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } , 
v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ( `' ( g  e.  ( R  Cn  S )  |->  ( F  o.  g ) ) " x )  e.  ( S  ^ k o  R )
) ) )
837, 64, 82mpbir2and 889 1  |-  ( ph  ->  ( g  e.  ( R  Cn  S ) 
|->  ( F  o.  g
) )  e.  ( ( S  ^ k o  R )  Cn  ( T  ^ k o  R
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2650   E.wrex 2651   {crab 2654   _Vcvv 2900    C_ wss 3264   ~Pcpw 3743   U.cuni 3958    e. cmpt 4208    X. cxp 4817   `'ccnv 4818   dom cdm 4819   ran crn 4820   "cima 4822    o. ccom 4823   Fun wfun 5389   -->wf 5391   ` cfv 5395  (class class class)co 6021    e. cmpt2 6023   ficfi 7351   ↾t crest 13576   topGenctg 13593   Topctop 16882  TopOnctopon 16883    Cn ccn 17211   Compccmp 17372    ^ k o cxko 17515
This theorem is referenced by:  cnmptk1  17635
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-recs 6570  df-rdg 6605  df-1o 6661  df-oadd 6665  df-er 6842  df-map 6957  df-en 7047  df-dom 7048  df-fin 7050  df-fi 7352  df-rest 13578  df-topgen 13595  df-top 16887  df-bases 16889  df-topon 16890  df-cn 17214  df-cmp 17373  df-xko 17517
  Copyright terms: Public domain W3C validator