MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkococn Structured version   Unicode version

Theorem xkococn 17697
Description: Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
xkococn.1  |-  F  =  ( f  e.  ( S  Cn  T ) ,  g  e.  ( R  Cn  S ) 
|->  ( f  o.  g
) )
Assertion
Ref Expression
xkococn  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  F  e.  ( ( ( T  ^ k o  S
)  tX  ( S  ^ k o  R ) )  Cn  ( T  ^ k o  R
) ) )
Distinct variable groups:    f, g, R    S, f, g    T, f, g
Allowed substitution hints:    F( f, g)

Proof of Theorem xkococn
Dummy variables  k 
a  v  x  y  z  b  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 735 . . . . 5  |-  ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  (
f  e.  ( S  Cn  T )  /\  g  e.  ( R  Cn  S ) ) )  ->  g  e.  ( R  Cn  S ) )
2 simprl 734 . . . . 5  |-  ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  (
f  e.  ( S  Cn  T )  /\  g  e.  ( R  Cn  S ) ) )  ->  f  e.  ( S  Cn  T ) )
3 cnco 17335 . . . . 5  |-  ( ( g  e.  ( R  Cn  S )  /\  f  e.  ( S  Cn  T ) )  -> 
( f  o.  g
)  e.  ( R  Cn  T ) )
41, 2, 3syl2anc 644 . . . 4  |-  ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  (
f  e.  ( S  Cn  T )  /\  g  e.  ( R  Cn  S ) ) )  ->  ( f  o.  g )  e.  ( R  Cn  T ) )
54ralrimivva 2800 . . 3  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  A. f  e.  ( S  Cn  T
) A. g  e.  ( R  Cn  S
) ( f  o.  g )  e.  ( R  Cn  T ) )
6 xkococn.1 . . . 4  |-  F  =  ( f  e.  ( S  Cn  T ) ,  g  e.  ( R  Cn  S ) 
|->  ( f  o.  g
) )
76fmpt2 6421 . . 3  |-  ( A. f  e.  ( S  Cn  T ) A. g  e.  ( R  Cn  S
) ( f  o.  g )  e.  ( R  Cn  T )  <-> 
F : ( ( S  Cn  T )  X.  ( R  Cn  S ) ) --> ( R  Cn  T ) )
85, 7sylib 190 . 2  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  F :
( ( S  Cn  T )  X.  ( R  Cn  S ) ) --> ( R  Cn  T
) )
9 eqid 2438 . . . . . . 7  |-  ( k  e.  { y  e. 
~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } )  =  ( k  e.  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } )
109rnmpt2 6183 . . . . . 6  |-  ran  (
k  e.  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } )  =  {
x  |  E. k  e.  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } E. v  e.  T  x  =  { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } }
1110eleq2i 2502 . . . . 5  |-  ( x  e.  ran  ( k  e.  { y  e. 
~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } )  <->  x  e.  { x  |  E. k  e.  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } E. v  e.  T  x  =  { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } } )
12 abid 2426 . . . . 5  |-  ( x  e.  { x  |  E. k  e.  {
y  e.  ~P U. R  |  ( Rt  y
)  e.  Comp } E. v  e.  T  x  =  { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } }  <->  E. k  e.  {
y  e.  ~P U. R  |  ( Rt  y
)  e.  Comp } E. v  e.  T  x  =  { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } )
13 oveq2 6092 . . . . . . 7  |-  ( y  =  k  ->  ( Rt  y )  =  ( Rt  k ) )
1413eleq1d 2504 . . . . . 6  |-  ( y  =  k  ->  (
( Rt  y )  e. 
Comp 
<->  ( Rt  k )  e. 
Comp ) )
1514rexrab 3100 . . . . 5  |-  ( E. k  e.  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } E. v  e.  T  x  =  { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }  <->  E. k  e.  ~P  U. R ( ( Rt  k )  e.  Comp  /\  E. v  e.  T  x  =  { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } ) )
1611, 12, 153bitri 264 . . . 4  |-  ( x  e.  ran  ( k  e.  { y  e. 
~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } )  <->  E. k  e.  ~P  U. R ( ( Rt  k )  e. 
Comp  /\  E. v  e.  T  x  =  {
h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) )
178ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e.  ~P U. R  /\  ( Rt  k )  e.  Comp )
)  /\  v  e.  T )  ->  F : ( ( S  Cn  T )  X.  ( R  Cn  S
) ) --> ( R  Cn  T ) )
18 ffn 5594 . . . . . . . . . . . . 13  |-  ( F : ( ( S  Cn  T )  X.  ( R  Cn  S
) ) --> ( R  Cn  T )  ->  F  Fn  ( ( S  Cn  T )  X.  ( R  Cn  S
) ) )
19 elpreima 5853 . . . . . . . . . . . . 13  |-  ( F  Fn  ( ( S  Cn  T )  X.  ( R  Cn  S
) )  ->  (
y  e.  ( `' F " { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } )  <->  ( y  e.  ( ( S  Cn  T )  X.  ( R  Cn  S ) )  /\  ( F `  y )  e.  {
h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ) )
2017, 18, 193syl 19 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e.  ~P U. R  /\  ( Rt  k )  e.  Comp )
)  /\  v  e.  T )  ->  (
y  e.  ( `' F " { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } )  <->  ( y  e.  ( ( S  Cn  T )  X.  ( R  Cn  S ) )  /\  ( F `  y )  e.  {
h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ) )
21 coeq1 5033 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  a  ->  (
f  o.  g )  =  ( a  o.  g ) )
22 coeq2 5034 . . . . . . . . . . . . . . . . . . . 20  |-  ( g  =  b  ->  (
a  o.  g )  =  ( a  o.  b ) )
23 vex 2961 . . . . . . . . . . . . . . . . . . . . 21  |-  a  e. 
_V
24 vex 2961 . . . . . . . . . . . . . . . . . . . . 21  |-  b  e. 
_V
2523, 24coex 5416 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  o.  b )  e. 
_V
2621, 22, 6, 25ovmpt2 6212 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  e.  ( S  Cn  T )  /\  b  e.  ( R  Cn  S ) )  -> 
( a F b )  =  ( a  o.  b ) )
2726adantl 454 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e. 
~P U. R  /\  ( Rt  k )  e.  Comp ) )  /\  v  e.  T )  /\  (
a  e.  ( S  Cn  T )  /\  b  e.  ( R  Cn  S ) ) )  ->  ( a F b )  =  ( a  o.  b ) )
2827eleq1d 2504 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e. 
~P U. R  /\  ( Rt  k )  e.  Comp ) )  /\  v  e.  T )  /\  (
a  e.  ( S  Cn  T )  /\  b  e.  ( R  Cn  S ) ) )  ->  ( ( a F b )  e. 
{ h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } 
<->  ( a  o.  b
)  e.  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } ) )
29 imaeq1 5201 . . . . . . . . . . . . . . . . . . . . 21  |-  ( h  =  ( a  o.  b )  ->  (
h " k )  =  ( ( a  o.  b ) "
k ) )
3029sseq1d 3377 . . . . . . . . . . . . . . . . . . . 20  |-  ( h  =  ( a  o.  b )  ->  (
( h " k
)  C_  v  <->  ( (
a  o.  b )
" k )  C_  v ) )
3130elrab 3094 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  o.  b )  e.  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v }  <->  ( ( a  o.  b )  e.  ( R  Cn  T
)  /\  ( (
a  o.  b )
" k )  C_  v ) )
3231simprbi 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  o.  b )  e.  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v }  ->  ( ( a  o.  b )
" k )  C_  v )
33 simp2 959 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  S  e. 𝑛Locally  Comp )
3433ad3antrrr 712 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e. 
~P U. R  /\  ( Rt  k )  e.  Comp ) )  /\  v  e.  T )  /\  (
( a  e.  ( S  Cn  T )  /\  b  e.  ( R  Cn  S ) )  /\  ( ( a  o.  b )
" k )  C_  v ) )  ->  S  e. 𝑛Locally  Comp )
35 elpwi 3809 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ~P U. R  ->  k  C_  U. R )
3635ad2antrl 710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  (
k  e.  ~P U. R  /\  ( Rt  k )  e.  Comp ) )  -> 
k  C_  U. R )
3736ad2antrr 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e. 
~P U. R  /\  ( Rt  k )  e.  Comp ) )  /\  v  e.  T )  /\  (
( a  e.  ( S  Cn  T )  /\  b  e.  ( R  Cn  S ) )  /\  ( ( a  o.  b )
" k )  C_  v ) )  -> 
k  C_  U. R )
38 simprr 735 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  (
k  e.  ~P U. R  /\  ( Rt  k )  e.  Comp ) )  -> 
( Rt  k )  e. 
Comp )
3938ad2antrr 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e. 
~P U. R  /\  ( Rt  k )  e.  Comp ) )  /\  v  e.  T )  /\  (
( a  e.  ( S  Cn  T )  /\  b  e.  ( R  Cn  S ) )  /\  ( ( a  o.  b )
" k )  C_  v ) )  -> 
( Rt  k )  e. 
Comp )
40 simplr 733 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e. 
~P U. R  /\  ( Rt  k )  e.  Comp ) )  /\  v  e.  T )  /\  (
( a  e.  ( S  Cn  T )  /\  b  e.  ( R  Cn  S ) )  /\  ( ( a  o.  b )
" k )  C_  v ) )  -> 
v  e.  T )
41 simprll 740 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e. 
~P U. R  /\  ( Rt  k )  e.  Comp ) )  /\  v  e.  T )  /\  (
( a  e.  ( S  Cn  T )  /\  b  e.  ( R  Cn  S ) )  /\  ( ( a  o.  b )
" k )  C_  v ) )  -> 
a  e.  ( S  Cn  T ) )
42 simprlr 741 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e. 
~P U. R  /\  ( Rt  k )  e.  Comp ) )  /\  v  e.  T )  /\  (
( a  e.  ( S  Cn  T )  /\  b  e.  ( R  Cn  S ) )  /\  ( ( a  o.  b )
" k )  C_  v ) )  -> 
b  e.  ( R  Cn  S ) )
43 simprr 735 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e. 
~P U. R  /\  ( Rt  k )  e.  Comp ) )  /\  v  e.  T )  /\  (
( a  e.  ( S  Cn  T )  /\  b  e.  ( R  Cn  S ) )  /\  ( ( a  o.  b )
" k )  C_  v ) )  -> 
( ( a  o.  b ) " k
)  C_  v )
446, 34, 37, 39, 40, 41, 42, 43xkococnlem 17696 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e. 
~P U. R  /\  ( Rt  k )  e.  Comp ) )  /\  v  e.  T )  /\  (
( a  e.  ( S  Cn  T )  /\  b  e.  ( R  Cn  S ) )  /\  ( ( a  o.  b )
" k )  C_  v ) )  ->  E. z  e.  (
( T  ^ k o  S )  tX  ( S  ^ k o  R
) ) ( <.
a ,  b >.  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ) )
4544expr 600 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e. 
~P U. R  /\  ( Rt  k )  e.  Comp ) )  /\  v  e.  T )  /\  (
a  e.  ( S  Cn  T )  /\  b  e.  ( R  Cn  S ) ) )  ->  ( ( ( a  o.  b )
" k )  C_  v  ->  E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) ) ( <.
a ,  b >.  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ) ) )
4632, 45syl5 31 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e. 
~P U. R  /\  ( Rt  k )  e.  Comp ) )  /\  v  e.  T )  /\  (
a  e.  ( S  Cn  T )  /\  b  e.  ( R  Cn  S ) ) )  ->  ( ( a  o.  b )  e. 
{ h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v }  ->  E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) ) ( <.
a ,  b >.  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ) ) )
4728, 46sylbid 208 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e. 
~P U. R  /\  ( Rt  k )  e.  Comp ) )  /\  v  e.  T )  /\  (
a  e.  ( S  Cn  T )  /\  b  e.  ( R  Cn  S ) ) )  ->  ( ( a F b )  e. 
{ h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v }  ->  E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) ) ( <.
a ,  b >.  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ) ) )
4847ralrimivva 2800 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e.  ~P U. R  /\  ( Rt  k )  e.  Comp )
)  /\  v  e.  T )  ->  A. a  e.  ( S  Cn  T
) A. b  e.  ( R  Cn  S
) ( ( a F b )  e. 
{ h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v }  ->  E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) ) ( <.
a ,  b >.  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ) ) )
49 fveq2 5731 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  <. a ,  b
>.  ->  ( F `  y )  =  ( F `  <. a ,  b >. )
)
50 df-ov 6087 . . . . . . . . . . . . . . . . . . 19  |-  ( a F b )  =  ( F `  <. a ,  b >. )
5149, 50syl6eqr 2488 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  <. a ,  b
>.  ->  ( F `  y )  =  ( a F b ) )
5251eleq1d 2504 . . . . . . . . . . . . . . . . 17  |-  ( y  =  <. a ,  b
>.  ->  ( ( F `
 y )  e. 
{ h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } 
<->  ( a F b )  e.  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } ) )
53 eleq1 2498 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  <. a ,  b
>.  ->  ( y  e.  z  <->  <. a ,  b
>.  e.  z ) )
5453anbi1d 687 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  <. a ,  b
>.  ->  ( ( y  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) )  <->  ( <. a ,  b >.  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } ) ) ) )
5554rexbidv 2728 . . . . . . . . . . . . . . . . 17  |-  ( y  =  <. a ,  b
>.  ->  ( E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R ) ) ( y  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } ) )  <->  E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R ) ) (
<. a ,  b >.  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ) ) )
5652, 55imbi12d 313 . . . . . . . . . . . . . . . 16  |-  ( y  =  <. a ,  b
>.  ->  ( ( ( F `  y )  e.  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v }  ->  E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R ) ) ( y  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } ) ) )  <-> 
( ( a F b )  e.  {
h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }  ->  E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) ) ( <.
a ,  b >.  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ) ) ) )
5756ralxp 5019 . . . . . . . . . . . . . . 15  |-  ( A. y  e.  ( ( S  Cn  T )  X.  ( R  Cn  S
) ) ( ( F `  y )  e.  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v }  ->  E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R ) ) ( y  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } ) ) )  <->  A. a  e.  ( S  Cn  T ) A. b  e.  ( R  Cn  S ) ( ( a F b )  e.  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v }  ->  E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R ) ) (
<. a ,  b >.  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ) ) )
5848, 57sylibr 205 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e.  ~P U. R  /\  ( Rt  k )  e.  Comp )
)  /\  v  e.  T )  ->  A. y  e.  ( ( S  Cn  T )  X.  ( R  Cn  S ) ) ( ( F `  y )  e.  {
h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }  ->  E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) ) ( y  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ) ) )
5958r19.21bi 2806 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e. 
~P U. R  /\  ( Rt  k )  e.  Comp ) )  /\  v  e.  T )  /\  y  e.  ( ( S  Cn  T )  X.  ( R  Cn  S ) ) )  ->  ( ( F `  y )  e.  { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v }  ->  E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) ) ( y  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ) ) )
6059expimpd 588 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e.  ~P U. R  /\  ( Rt  k )  e.  Comp )
)  /\  v  e.  T )  ->  (
( y  e.  ( ( S  Cn  T
)  X.  ( R  Cn  S ) )  /\  ( F `  y )  e.  {
h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
)  ->  E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R ) ) ( y  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } ) ) ) )
6120, 60sylbid 208 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e.  ~P U. R  /\  ( Rt  k )  e.  Comp )
)  /\  v  e.  T )  ->  (
y  e.  ( `' F " { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } )  ->  E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R ) ) ( y  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } ) ) ) )
6261ralrimiv 2790 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e.  ~P U. R  /\  ( Rt  k )  e.  Comp )
)  /\  v  e.  T )  ->  A. y  e.  ( `' F " { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R ) ) ( y  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } ) ) )
63 nllytop 17541 . . . . . . . . . . . . . . 15  |-  ( S  e. 𝑛Locally 
Comp  ->  S  e.  Top )
64633ad2ant2 980 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  S  e. 
Top )
65 simp3 960 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  T  e. 
Top )
66 xkotop 17625 . . . . . . . . . . . . . 14  |-  ( ( S  e.  Top  /\  T  e.  Top )  ->  ( T  ^ k o  S )  e.  Top )
6764, 65, 66syl2anc 644 . . . . . . . . . . . . 13  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  ( T  ^ k o  S
)  e.  Top )
68 simp1 958 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  R  e. 
Top )
69 xkotop 17625 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( S  ^ k o  R )  e.  Top )
7068, 64, 69syl2anc 644 . . . . . . . . . . . . 13  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  ( S  ^ k o  R
)  e.  Top )
71 txtop 17606 . . . . . . . . . . . . 13  |-  ( ( ( T  ^ k o  S )  e.  Top  /\  ( S  ^ k o  R )  e.  Top )  ->  ( ( T  ^ k o  S
)  tX  ( S  ^ k o  R ) )  e.  Top )
7267, 70, 71syl2anc 644 . . . . . . . . . . . 12  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) )  e.  Top )
7372ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e.  ~P U. R  /\  ( Rt  k )  e.  Comp )
)  /\  v  e.  T )  ->  (
( T  ^ k o  S )  tX  ( S  ^ k o  R
) )  e.  Top )
74 eltop2 17045 . . . . . . . . . . 11  |-  ( ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) )  e.  Top  ->  ( ( `' F " { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } )  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) )  <->  A. y  e.  ( `' F " { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R ) ) ( y  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } ) ) ) )
7573, 74syl 16 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e.  ~P U. R  /\  ( Rt  k )  e.  Comp )
)  /\  v  e.  T )  ->  (
( `' F " { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
)  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) )  <->  A. y  e.  ( `' F " { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) E. z  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R ) ) ( y  e.  z  /\  z  C_  ( `' F " { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } ) ) ) )
7662, 75mpbird 225 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e.  ~P U. R  /\  ( Rt  k )  e.  Comp )
)  /\  v  e.  T )  ->  ( `' F " { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } )  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) ) )
77 imaeq2 5202 . . . . . . . . . 10  |-  ( x  =  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v }  ->  ( `' F " x )  =  ( `' F " { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } ) )
7877eleq1d 2504 . . . . . . . . 9  |-  ( x  =  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v }  ->  ( ( `' F " x )  e.  ( ( T  ^ k o  S
)  tX  ( S  ^ k o  R ) )  <->  ( `' F " { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } )  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) ) ) )
7976, 78syl5ibrcom 215 . . . . . . . 8  |-  ( ( ( ( R  e. 
Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  ( k  e.  ~P U. R  /\  ( Rt  k )  e.  Comp )
)  /\  v  e.  T )  ->  (
x  =  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v }  ->  ( `' F " x )  e.  ( ( T  ^ k o  S
)  tX  ( S  ^ k o  R ) ) ) )
8079rexlimdva 2832 . . . . . . 7  |-  ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  (
k  e.  ~P U. R  /\  ( Rt  k )  e.  Comp ) )  -> 
( E. v  e.  T  x  =  {
h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }  ->  ( `' F "
x )  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) ) ) )
8180anassrs 631 . . . . . 6  |-  ( ( ( ( R  e. 
Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  k  e.  ~P U. R )  /\  ( Rt  k )  e.  Comp )  ->  ( E. v  e.  T  x  =  { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }  ->  ( `' F "
x )  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) ) ) )
8281expimpd 588 . . . . 5  |-  ( ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  /\  k  e.  ~P U. R )  ->  ( ( ( Rt  k )  e.  Comp  /\ 
E. v  e.  T  x  =  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } )  ->  ( `' F " x )  e.  ( ( T  ^ k o  S
)  tX  ( S  ^ k o  R ) ) ) )
8382rexlimdva 2832 . . . 4  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  ( E. k  e.  ~P  U. R ( ( Rt  k )  e.  Comp  /\  E. v  e.  T  x  =  { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } )  ->  ( `' F " x )  e.  ( ( T  ^ k o  S
)  tX  ( S  ^ k o  R ) ) ) )
8416, 83syl5bi 210 . . 3  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  ( x  e.  ran  ( k  e.  { y  e. 
~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } )  ->  ( `' F " x )  e.  ( ( T  ^ k o  S
)  tX  ( S  ^ k o  R ) ) ) )
8584ralrimiv 2790 . 2  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  A. x  e.  ran  ( k  e. 
{ y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } , 
v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ( `' F " x )  e.  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) ) )
86 eqid 2438 . . . . . 6  |-  ( T  ^ k o  S
)  =  ( T  ^ k o  S
)
8786xkotopon 17637 . . . . 5  |-  ( ( S  e.  Top  /\  T  e.  Top )  ->  ( T  ^ k o  S )  e.  (TopOn `  ( S  Cn  T
) ) )
8864, 65, 87syl2anc 644 . . . 4  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  ( T  ^ k o  S
)  e.  (TopOn `  ( S  Cn  T
) ) )
89 eqid 2438 . . . . . 6  |-  ( S  ^ k o  R
)  =  ( S  ^ k o  R
)
9089xkotopon 17637 . . . . 5  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( S  ^ k o  R )  e.  (TopOn `  ( R  Cn  S
) ) )
9168, 64, 90syl2anc 644 . . . 4  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  ( S  ^ k o  R
)  e.  (TopOn `  ( R  Cn  S
) ) )
92 txtopon 17628 . . . 4  |-  ( ( ( T  ^ k o  S )  e.  (TopOn `  ( S  Cn  T
) )  /\  ( S  ^ k o  R
)  e.  (TopOn `  ( R  Cn  S
) ) )  -> 
( ( T  ^ k o  S )  tX  ( S  ^ k o  R ) )  e.  (TopOn `  ( ( S  Cn  T )  X.  ( R  Cn  S
) ) ) )
9388, 91, 92syl2anc 644 . . 3  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) )  e.  (TopOn `  ( ( S  Cn  T )  X.  ( R  Cn  S ) ) ) )
94 ovex 6109 . . . . . 6  |-  ( R  Cn  T )  e. 
_V
9594pwex 4385 . . . . 5  |-  ~P ( R  Cn  T )  e. 
_V
96 eqid 2438 . . . . . . 7  |-  U. R  =  U. R
97 eqid 2438 . . . . . . 7  |-  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp }  =  {
y  e.  ~P U. R  |  ( Rt  y
)  e.  Comp }
9896, 97, 9xkotf 17622 . . . . . 6  |-  ( k  e.  { y  e. 
~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h "
k )  C_  v } ) : ( { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp }  X.  T ) --> ~P ( R  Cn  T )
99 frn 5600 . . . . . 6  |-  ( ( k  e.  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } ) : ( { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp }  X.  T ) --> ~P ( R  Cn  T )  ->  ran  ( k  e.  {
y  e.  ~P U. R  |  ( Rt  y
)  e.  Comp } , 
v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
)  C_  ~P ( R  Cn  T ) )
10098, 99ax-mp 5 . . . . 5  |-  ran  (
k  e.  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } )  C_  ~P ( R  Cn  T
)
10195, 100ssexi 4351 . . . 4  |-  ran  (
k  e.  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } )  e.  _V
102101a1i 11 . . 3  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  ran  (
k  e.  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } )  e.  _V )
10396, 97, 9xkoval 17624 . . . 4  |-  ( ( R  e.  Top  /\  T  e.  Top )  ->  ( T  ^ k o  R )  =  (
topGen `  ( fi `  ran  ( k  e.  {
y  e.  ~P U. R  |  ( Rt  y
)  e.  Comp } , 
v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ) ) )
1041033adant2 977 . . 3  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  ( T  ^ k o  R
)  =  ( topGen `  ( fi `  ran  ( k  e.  {
y  e.  ~P U. R  |  ( Rt  y
)  e.  Comp } , 
v  e.  T  |->  { h  e.  ( R  Cn  T )  |  ( h " k
)  C_  v }
) ) ) )
105 eqid 2438 . . . . 5  |-  ( T  ^ k o  R
)  =  ( T  ^ k o  R
)
106105xkotopon 17637 . . . 4  |-  ( ( R  e.  Top  /\  T  e.  Top )  ->  ( T  ^ k o  R )  e.  (TopOn `  ( R  Cn  T
) ) )
1071063adant2 977 . . 3  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  ( T  ^ k o  R
)  e.  (TopOn `  ( R  Cn  T
) ) )
10893, 102, 104, 107subbascn 17323 . 2  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  ( F  e.  ( ( ( T  ^ k o  S )  tX  ( S  ^ k o  R
) )  Cn  ( T  ^ k o  R
) )  <->  ( F : ( ( S  Cn  T )  X.  ( R  Cn  S
) ) --> ( R  Cn  T )  /\  A. x  e.  ran  (
k  e.  { y  e.  ~P U. R  |  ( Rt  y )  e.  Comp } ,  v  e.  T  |->  { h  e.  ( R  Cn  T
)  |  ( h
" k )  C_  v } ) ( `' F " x )  e.  ( ( T  ^ k o  S
)  tX  ( S  ^ k o  R ) ) ) ) )
1098, 85, 108mpbir2and 890 1  |-  ( ( R  e.  Top  /\  S  e. 𝑛Locally  Comp  /\  T  e.  Top )  ->  F  e.  ( ( ( T  ^ k o  S
)  tX  ( S  ^ k o  R ) )  Cn  ( T  ^ k o  R
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   {cab 2424   A.wral 2707   E.wrex 2708   {crab 2711   _Vcvv 2958    C_ wss 3322   ~Pcpw 3801   <.cop 3819   U.cuni 4017    X. cxp 4879   `'ccnv 4880   ran crn 4882   "cima 4884    o. ccom 4885    Fn wfn 5452   -->wf 5453   ` cfv 5457  (class class class)co 6084    e. cmpt2 6086   ficfi 7418   ↾t crest 13653   topGenctg 13670   Topctop 16963  TopOnctopon 16964    Cn ccn 17293   Compccmp 17454  𝑛Locally cnlly 17533    tX ctx 17597    ^ k o cxko 17598
This theorem is referenced by:  cnmptkk  17720  xkofvcn  17721  symgtgp  18136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-fin 7116  df-fi 7419  df-rest 13655  df-topgen 13672  df-top 16968  df-bases 16970  df-topon 16971  df-ntr 17089  df-nei 17167  df-cn 17296  df-cmp 17455  df-nlly 17535  df-tx 17599  df-xko 17600
  Copyright terms: Public domain W3C validator