Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpexb Unicode version

Theorem xpexb 27327
Description: A Cartesian product exists iff its converse does. Corollary 6.9(1) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.)
Assertion
Ref Expression
xpexb  |-  ( ( A  X.  B )  e.  _V  <->  ( B  X.  A )  e.  _V )

Proof of Theorem xpexb
StepHypRef Expression
1 cnvxp 5231 . . 3  |-  `' ( A  X.  B )  =  ( B  X.  A )
2 cnvexg 5346 . . 3  |-  ( ( A  X.  B )  e.  _V  ->  `' ( A  X.  B
)  e.  _V )
31, 2syl5eqelr 2473 . 2  |-  ( ( A  X.  B )  e.  _V  ->  ( B  X.  A )  e. 
_V )
4 cnvxp 5231 . . 3  |-  `' ( B  X.  A )  =  ( A  X.  B )
5 cnvexg 5346 . . 3  |-  ( ( B  X.  A )  e.  _V  ->  `' ( B  X.  A
)  e.  _V )
64, 5syl5eqelr 2473 . 2  |-  ( ( B  X.  A )  e.  _V  ->  ( A  X.  B )  e. 
_V )
73, 6impbii 181 1  |-  ( ( A  X.  B )  e.  _V  <->  ( B  X.  A )  e.  _V )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    e. wcel 1717   _Vcvv 2900    X. cxp 4817   `'ccnv 4818
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-xp 4825  df-rel 4826  df-cnv 4827  df-dm 4829  df-rn 4830
  Copyright terms: Public domain W3C validator