Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpexb Unicode version

Theorem xpexb 27669
Description: A Cartesian product exists iff its converse does. Corollary 6.9(1) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.)
Assertion
Ref Expression
xpexb  |-  ( ( A  X.  B )  e.  _V  <->  ( B  X.  A )  e.  _V )

Proof of Theorem xpexb
StepHypRef Expression
1 cnvxp 5099 . . 3  |-  `' ( A  X.  B )  =  ( B  X.  A )
2 cnvexg 5210 . . 3  |-  ( ( A  X.  B )  e.  _V  ->  `' ( A  X.  B
)  e.  _V )
31, 2syl5eqelr 2370 . 2  |-  ( ( A  X.  B )  e.  _V  ->  ( B  X.  A )  e. 
_V )
4 cnvxp 5099 . . 3  |-  `' ( B  X.  A )  =  ( A  X.  B )
5 cnvexg 5210 . . 3  |-  ( ( B  X.  A )  e.  _V  ->  `' ( B  X.  A
)  e.  _V )
64, 5syl5eqelr 2370 . 2  |-  ( ( B  X.  A )  e.  _V  ->  ( A  X.  B )  e. 
_V )
73, 6impbii 180 1  |-  ( ( A  X.  B )  e.  _V  <->  ( B  X.  A )  e.  _V )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    e. wcel 1686   _Vcvv 2790    X. cxp 4689   `'ccnv 4690
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-13 1688  ax-14 1690  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266  ax-sep 4143  ax-nul 4151  ax-pow 4190  ax-pr 4216  ax-un 4514
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-ral 2550  df-rex 2551  df-rab 2554  df-v 2792  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-op 3651  df-uni 3830  df-br 4026  df-opab 4080  df-xp 4697  df-rel 4698  df-cnv 4699  df-dm 4701  df-rn 4702
  Copyright terms: Public domain W3C validator