Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpinpreima2 Unicode version

Theorem xpinpreima2 24110
Description: Rewrite the cartesian product of two sets as the intersection of their preimage by  1st and  2nd, the projections on the first and second elements. (Contributed by Thierry Arnoux, 22-Sep-2017.)
Assertion
Ref Expression
xpinpreima2  |-  ( ( A  C_  E  /\  B  C_  F )  -> 
( A  X.  B
)  =  ( ( `' ( 1st  |`  ( E  X.  F ) )
" A )  i^i  ( `' ( 2nd  |`  ( E  X.  F
) ) " B
) ) )

Proof of Theorem xpinpreima2
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 xpss 4923 . . . . . 6  |-  ( E  X.  F )  C_  ( _V  X.  _V )
2 rabss2 3370 . . . . . 6  |-  ( ( E  X.  F ) 
C_  ( _V  X.  _V )  ->  { r  e.  ( E  X.  F )  |  ( ( 1st `  r
)  e.  A  /\  ( 2nd `  r )  e.  B ) } 
C_  { r  e.  ( _V  X.  _V )  |  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r )  e.  B
) } )
31, 2mp1i 12 . . . . 5  |-  ( ( A  C_  E  /\  B  C_  F )  ->  { r  e.  ( E  X.  F )  |  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) }  C_  { r  e.  ( _V  X.  _V )  |  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r )  e.  B
) } )
4 simprl 733 . . . . . . 7  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  r  e.  ( _V  X.  _V ) )
5 simpll 731 . . . . . . . . 9  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  A  C_  E )
6 simprrl 741 . . . . . . . . 9  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  ( 1st `  r )  e.  A )
75, 6sseldd 3293 . . . . . . . 8  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  ( 1st `  r )  e.  E )
8 simplr 732 . . . . . . . . 9  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  B  C_  F )
9 simprrr 742 . . . . . . . . 9  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  ( 2nd `  r )  e.  B )
108, 9sseldd 3293 . . . . . . . 8  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  ( 2nd `  r )  e.  F )
117, 10jca 519 . . . . . . 7  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  (
( 1st `  r
)  e.  E  /\  ( 2nd `  r )  e.  F ) )
12 elxp7 6319 . . . . . . 7  |-  ( r  e.  ( E  X.  F )  <->  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  E  /\  ( 2nd `  r
)  e.  F ) ) )
134, 11, 12sylanbrc 646 . . . . . 6  |-  ( ( ( A  C_  E  /\  B  C_  F )  /\  ( r  e.  ( _V  X.  _V )  /\  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) ) )  ->  r  e.  ( E  X.  F
) )
1413rabss3d 23840 . . . . 5  |-  ( ( A  C_  E  /\  B  C_  F )  ->  { r  e.  ( _V  X.  _V )  |  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) }  C_  { r  e.  ( E  X.  F
)  |  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r )  e.  B ) } )
153, 14eqssd 3309 . . . 4  |-  ( ( A  C_  E  /\  B  C_  F )  ->  { r  e.  ( E  X.  F )  |  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) }  =  { r  e.  ( _V  X.  _V )  |  (
( 1st `  r
)  e.  A  /\  ( 2nd `  r )  e.  B ) } )
16 xp2 6324 . . . 4  |-  ( A  X.  B )  =  { r  e.  ( _V  X.  _V )  |  ( ( 1st `  r )  e.  A  /\  ( 2nd `  r
)  e.  B ) }
1715, 16syl6reqr 2439 . . 3  |-  ( ( A  C_  E  /\  B  C_  F )  -> 
( A  X.  B
)  =  { r  e.  ( E  X.  F )  |  ( ( 1st `  r
)  e.  A  /\  ( 2nd `  r )  e.  B ) } )
18 inrab 3557 . . 3  |-  ( { r  e.  ( E  X.  F )  |  ( 1st `  r
)  e.  A }  i^i  { r  e.  ( E  X.  F )  |  ( 2nd `  r
)  e.  B }
)  =  { r  e.  ( E  X.  F )  |  ( ( 1st `  r
)  e.  A  /\  ( 2nd `  r )  e.  B ) }
1917, 18syl6eqr 2438 . 2  |-  ( ( A  C_  E  /\  B  C_  F )  -> 
( A  X.  B
)  =  ( { r  e.  ( E  X.  F )  |  ( 1st `  r
)  e.  A }  i^i  { r  e.  ( E  X.  F )  |  ( 2nd `  r
)  e.  B }
) )
20 f1stres 6308 . . . . 5  |-  ( 1st  |`  ( E  X.  F
) ) : ( E  X.  F ) --> E
21 ffn 5532 . . . . 5  |-  ( ( 1st  |`  ( E  X.  F ) ) : ( E  X.  F
) --> E  ->  ( 1st  |`  ( E  X.  F ) )  Fn  ( E  X.  F
) )
22 fncnvima2 5792 . . . . 5  |-  ( ( 1st  |`  ( E  X.  F ) )  Fn  ( E  X.  F
)  ->  ( `' ( 1st  |`  ( E  X.  F ) ) " A )  =  {
r  e.  ( E  X.  F )  |  ( ( 1st  |`  ( E  X.  F ) ) `
 r )  e.  A } )
2320, 21, 22mp2b 10 . . . 4  |-  ( `' ( 1st  |`  ( E  X.  F ) )
" A )  =  { r  e.  ( E  X.  F )  |  ( ( 1st  |`  ( E  X.  F
) ) `  r
)  e.  A }
24 fvres 5686 . . . . . 6  |-  ( r  e.  ( E  X.  F )  ->  (
( 1st  |`  ( E  X.  F ) ) `
 r )  =  ( 1st `  r
) )
2524eleq1d 2454 . . . . 5  |-  ( r  e.  ( E  X.  F )  ->  (
( ( 1st  |`  ( E  X.  F ) ) `
 r )  e.  A  <->  ( 1st `  r
)  e.  A ) )
2625rabbiia 2890 . . . 4  |-  { r  e.  ( E  X.  F )  |  ( ( 1st  |`  ( E  X.  F ) ) `
 r )  e.  A }  =  {
r  e.  ( E  X.  F )  |  ( 1st `  r
)  e.  A }
2723, 26eqtri 2408 . . 3  |-  ( `' ( 1st  |`  ( E  X.  F ) )
" A )  =  { r  e.  ( E  X.  F )  |  ( 1st `  r
)  e.  A }
28 f2ndres 6309 . . . . 5  |-  ( 2nd  |`  ( E  X.  F
) ) : ( E  X.  F ) --> F
29 ffn 5532 . . . . 5  |-  ( ( 2nd  |`  ( E  X.  F ) ) : ( E  X.  F
) --> F  ->  ( 2nd  |`  ( E  X.  F ) )  Fn  ( E  X.  F
) )
30 fncnvima2 5792 . . . . 5  |-  ( ( 2nd  |`  ( E  X.  F ) )  Fn  ( E  X.  F
)  ->  ( `' ( 2nd  |`  ( E  X.  F ) ) " B )  =  {
r  e.  ( E  X.  F )  |  ( ( 2nd  |`  ( E  X.  F ) ) `
 r )  e.  B } )
3128, 29, 30mp2b 10 . . . 4  |-  ( `' ( 2nd  |`  ( E  X.  F ) )
" B )  =  { r  e.  ( E  X.  F )  |  ( ( 2nd  |`  ( E  X.  F
) ) `  r
)  e.  B }
32 fvres 5686 . . . . . 6  |-  ( r  e.  ( E  X.  F )  ->  (
( 2nd  |`  ( E  X.  F ) ) `
 r )  =  ( 2nd `  r
) )
3332eleq1d 2454 . . . . 5  |-  ( r  e.  ( E  X.  F )  ->  (
( ( 2nd  |`  ( E  X.  F ) ) `
 r )  e.  B  <->  ( 2nd `  r
)  e.  B ) )
3433rabbiia 2890 . . . 4  |-  { r  e.  ( E  X.  F )  |  ( ( 2nd  |`  ( E  X.  F ) ) `
 r )  e.  B }  =  {
r  e.  ( E  X.  F )  |  ( 2nd `  r
)  e.  B }
3531, 34eqtri 2408 . . 3  |-  ( `' ( 2nd  |`  ( E  X.  F ) )
" B )  =  { r  e.  ( E  X.  F )  |  ( 2nd `  r
)  e.  B }
3627, 35ineq12i 3484 . 2  |-  ( ( `' ( 1st  |`  ( E  X.  F ) )
" A )  i^i  ( `' ( 2nd  |`  ( E  X.  F
) ) " B
) )  =  ( { r  e.  ( E  X.  F )  |  ( 1st `  r
)  e.  A }  i^i  { r  e.  ( E  X.  F )  |  ( 2nd `  r
)  e.  B }
)
3719, 36syl6eqr 2438 1  |-  ( ( A  C_  E  /\  B  C_  F )  -> 
( A  X.  B
)  =  ( ( `' ( 1st  |`  ( E  X.  F ) )
" A )  i^i  ( `' ( 2nd  |`  ( E  X.  F
) ) " B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   {crab 2654   _Vcvv 2900    i^i cin 3263    C_ wss 3264    X. cxp 4817   `'ccnv 4818    |` cres 4821   "cima 4822    Fn wfn 5390   -->wf 5391   ` cfv 5395   1stc1st 6287   2ndc2nd 6288
This theorem is referenced by:  cnre2csqima  24114  sxbrsigalem2  24431  sxbrsiga  24435
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-fv 5403  df-1st 6289  df-2nd 6290
  Copyright terms: Public domain W3C validator