MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpomen Structured version   Unicode version

Theorem xpomen 7889
Description: The cross product of omega (the set of ordinal natural numbers) with itself is equinumerous to omega. Exercise 1 of [Enderton] p. 133. (Contributed by NM, 23-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
xpomen  |-  ( om 
X.  om )  ~~  om

Proof of Theorem xpomen
StepHypRef Expression
1 omelon 7593 . 2  |-  om  e.  On
2 ssid 3359 . 2  |-  om  C_  om
3 infxpen 7888 . 2  |-  ( ( om  e.  On  /\  om  C_  om )  ->  ( om  X.  om )  ~~  om )
41, 2, 3mp2an 654 1  |-  ( om 
X.  om )  ~~  om
Colors of variables: wff set class
Syntax hints:    e. wcel 1725    C_ wss 3312   class class class wbr 4204   Oncon0 4573   omcom 4837    X. cxp 4868    ~~ cen 7098
This theorem is referenced by:  infxpenc2  7895  iunfictbso  7987  unctb  8077  iunctb  8441  xpnnen  12800  rexpen  12819  2ndcctbss  17510  tx1stc  17674  tx2ndc  17675  met2ndci  18544  dyadmbl  19484  xpct  24094  fnct  24097
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-oi 7471  df-card 7818
  Copyright terms: Public domain W3C validator